Skip to main content
Log in

Differential responses of Phaseolus vulgaris cultivars following mungbean yellow mosaic India virus infection

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Phaseolus vulgaris, commonly known as French bean is a vital leguminous crop worldwide and India stood 1st rank in dry bean and 4th rank in green bean production worldwide (FAOSTAT 2017). However, this production is severely affected by Mungbean yellow mosaic India virus (MYMIV) infection. Hence it is very important to identify MYMIV tolerant P. vulgaris cultivars. MYMIV infection results in the production of reactive oxygen species and plant cells have evolved complex defense mechanisms at different levels to overcome the damage. Our study for the first time focused on the changes at the morphological and biochemical level, as well as on the relative quantification of MYMIV genes in nine cultivars of P. vulgaris after MYMIV infection. Highest growth and the highest accumulation of four antioxidants of cv. ‘Anupam’ after MYMIV infection, established that cv. ‘Anupam’ was less affected by MYMIV infection amongst all nine cultivars. Relative quantification studies also correlated well with these results. Additionally, there is a consistent level of photosynthetic pigments content in mock- and MYMIV-treated seedlings of cv. ‘Anupam’ over early infection period. Combining all the results we conclude that cv. ‘Anupam’ is a MYMIV tolerant cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

YMD:

Yellow mosaic disease

MYMIV:

Mungbean yellow mosaic India virus

CP:

Coat protein

Rep:

Replication associated protein

TrAP:

Transcription activator protein

REn:

Replication enhancer protein

NSP:

Nuclear shuttle protein

MP:

Movement protein

RCR:

Rolling circle replication

H2O2 :

Hydrogen peroxide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

CAT:

Catalase

RT-qPCR:

Real time quantitative polymerase chain reaction

ANOVA:

One-way analysis of variance

References

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). J Genet Plant Breed 46:27–34

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Anaya-López JL, Torres-Pacheco I, González-Chavira M, Garzón-TiznadoJA Pons-Hernández JL (2003) Resistance to geminivirus mixed infections in Mexican wild peppers. Hort Sci 38:251–255

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, signal transduction and stress. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Basak J, Kundagrami S, GhoseTK Pal A (2004) Development of Yellow Mosaic Virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV-reaction. Mol Breed 14:375–383

    Article  CAS  Google Scholar 

  • Bassiouny FM, Khalil RR, El-Dougdo KA, Abo-Elmaty S, Yousef MS (2015) Geminivirus antioxidant system and proline accumulation in tomato plant. J Funct Environ Bot 5:31–40

    Article  Google Scholar 

  • Baxter A, Ron M, Nobuhiro S (2014) ROS as key players in plant stress signaling. J Exp Bot 65(5):1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Biswas KK, Malathi VG, Varma A (2008) Diagnosis of symptomless Yellow mosaic begomovirus infection in pigeonpea by using cloned Mungbean yellow mosaic India virus as probe. J Plant Biochem Biotechnol 17(1):9–14

    Article  CAS  Google Scholar 

  • Biswas KK, Tarafdar A, Kumar A, Dikshit HK, Malathi VG (2009) Multiple infection in urdbean (Vigna mungo) in natural condition by begomovirus, tospovirus and urdbean leaf crinkle virus complex. Indian Phytopath 62(1):75–82

    CAS  Google Scholar 

  • Borges A, Tsai SM, Caldas DGG (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep 31:827–838

    Article  CAS  PubMed  Google Scholar 

  • Broadbent L (1964) The epidemiology of tomato mosaic virus VII. The effect of TMV on tomato fruit yield and quality under glass. Ann Appl Biol 54:209–224

    Article  Google Scholar 

  • Chakraborty N, Basak J (2018) Comparative transcriptome profiling of a resistant vs. susceptible Vigna mungo cultivar in response to Mungbean yellow mosaic India virus infection reveals new insight into MYMIV resistance. Curr Plant Biol 15:8–24

    Article  Google Scholar 

  • Clarke SF, Guya PL, Burritta DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114:157–164

    Article  CAS  PubMed  Google Scholar 

  • Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ 2(53):1–13

    CAS  Google Scholar 

  • Dhindsa RS, Dhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945

    Article  CAS  PubMed  Google Scholar 

  • Etalo DW, Stulemeijer Iris JE, Esse HP, VosRic CH, Bouwmeester HJ, Joosten MHAJ (2013) System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. Plant Physiol 162:1599–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores EM, Marin WA (1980) Morphological changes in bean leave (Phaseolus vulgaris L.) induced by rugose mosaic virus infection. Rev Biol Trop 28(1):121–133

    Google Scholar 

  • Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Fraser L, Matthews REF (1981) A rapid transient inhibition of leaf initiation induced by turnip yellow mosaic virus infection. Physiol Plant Pathol 19:325–336

    Article  Google Scholar 

  • García-Neria MA, Rivera-Bustamante RF (2011) Characterization of Geminivirus resistance in an accession of Capsicum chinense Jacq. Mol Plant Microbe Interact 24:172–182

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramirez ER, Sudarshana MR, Lucas WJ, Gilbertson RL (2000) Bean dwarf mosaic virus BV1 protein is a determinant of the hypersensitive response and avirulence in Phaseolus vulgaris. Mol Plant-Microbe Interact 13(11):1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci 5(6):1–13

    Google Scholar 

  • Gimenez E, Salinas M, Manzano-Agugliaro F (2018) Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 10(391):1–19

    Google Scholar 

  • Góngora-Castillo E, Ibarra-Laclette E, Trejo-Saavedra DL, Rivera-Bustamante RF (2012) Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol J 9:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafez MY, Bacso R, Kiraly Z, Kunstler A, Kiraly L (2012) Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102:848–856

    Article  CAS  PubMed  Google Scholar 

  • Hakmaoui A, Perez-Bueno ML, Garcia-Fontana B, Camejo D, Jimenez A, Sevilla F, Baron M (2012) Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus. J Exp Bot 63(15):5487–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2017). http://www.fao.org

  • Jaiswal N, Singh M, Dubey RS, Venkataramanappa V, Datta D (2013) Phytochemicals and antioxidative enzymes defense mechanism on occurrence of yellow vein mosaic disease of pumpkin (Cucurbita moschata). Biotech 3:287–295

    Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higherplants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  CAS  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 343–362

    Chapter  Google Scholar 

  • Karimi A, Mohammadi-Kamalabadi M, Rafieian-Kopaei M, AmjadL Salimzadeh L (2016) Determination of antioxidant activity, phenolic contents and antiviral potential of methanol extract of Euphorbia spinidens Bornm (Euphorbiaceae). Trop J Pharm Res 15:759–764

    Article  CAS  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11(8):982–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Kothandaraman S, Devadason A, Ganesan M (2016) Seed-borne nature of a begomovirus, Mung bean yellow mosaic virus in black gram. Appl Microbiol Biotechnol 100(4):1925–1933

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Patel A, Paul S, Pal A (2015) Transcript dynamics at early stages of molecular interactions of MYMIV with resistant and susceptible genotypes of the leguminous host, Vigna mungo. PLoS ONE 10(4):e0124687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu A, Singh PK, Dey A, Ganguli S, Pal A (2019) Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profling. Sci Rep 9:8858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127

    Article  Google Scholar 

  • Li F, Xu X, Huang C, Gu Z, Cao L, Hu T, Ding M, Li Z, Zhou X (2015) The AC5 protein encoded by Mungbean yellow mosaic India is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. New Phytol 208:555–569

    Article  CAS  PubMed  Google Scholar 

  • Metzner H, Rau H, Senger H (1965) Studies on the synchronizability of individual pigment deficient mutants of Chlorella. Planta 65:186

    Article  CAS  Google Scholar 

  • Mofunanya AAJ, Towolabi A, Nkang A (2015) Comparative study of the effect of Telfairia Mosaic Virus (TEMV) on the growth characteristics of two ecotypes of Telfairia occidentalis (Hooker Fil). Int J Virol 11(2):54–65

    Article  Google Scholar 

  • Naimuddin K, Mohammad A, Gupta S (2011) Identification of Mungbean yellow mosaic India virus infecting Vigna mungovar. silvestris L. Phytopathol Mediterr 50:94–100

    CAS  Google Scholar 

  • Naqvi RZ, Zaidi SS, Akhtar KP, Strickler S, Woldemariam M, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Jander G, Mueller LA, Asif M, Mansoor S (2017) Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboretum. Sci Rep 7:15880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nariani TK (1960) Yellow mosaic of mung (Phaseolus aureus). Indian Phytopathol 13:24–29

    Google Scholar 

  • Nene YL (1973) Viral diseases of some warm weather pulse crops in India. Plant Dis Rep 57:463–467

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defense and cell wall metabolism. Planta 236:765

    Article  CAS  PubMed  Google Scholar 

  • Obaiah S, Reddy BVB, Reddy NPE, Prasad YS (2014) Molecular detection of yellow mosaic virus infecting blackgram (Vigna mungo (L.) Hepper) in Andhra Pradesh. Int J Plant Animal Environ Sci 4(1):16–18

    CAS  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    PubMed  PubMed Central  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies L.). Plant Physiol 106:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qazi J, Ilyas M, Mansoor S, Briddon RW (2007) Legume yellow mosaic viruses: genetically isolated begomoviruses. Mol Plant Pathol 8(4):343–348

    Article  PubMed  Google Scholar 

  • Reddy BVB, Obaiah S, Prasanthi L, Sivaprasad Y, Sujitha A, Krishna TG (2015) Mungbean yellow mosaic India virus is associated with yellow mosaic disease of blackgram (Vigna mungo L.) in Andhra Pradesh, India. Arch Phytopathol Plant Protect 48(4):345–353

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protocols 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Seo YS, Gepts P, Gilbertson RL (2004) Genetics of resistance to the geminivirus, Bean dwarf mosaic virus, and the role of the hypersensitive response in common bean. Theor Appl Genet 108:786–793

    Article  PubMed  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Shepherd DN, Darren PM, Jennifer AT (2009) Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci 176:1–11

    Article  CAS  Google Scholar 

  • Shivaprasad PV, Akbergenov R, Trinks D, Rajeswaran R, Veluthambi K, Hohn T, Pooggin MM (2005) Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic geminivirus. J Virol 79:8149–8163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Chakraborty S, Singh AK, Pandey PK (2006) Cloning, restriction mapping and phylogenetic relationship of genomic components of MYMIV from Lablab purpureus. BioresourTechnol 97:1807–1814

    Article  CAS  Google Scholar 

  • Singh DK, Sumona K, Punjab SM, Nurul I, Sunil KM (2007) DNA replication and pathogenecity of MYMIV. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. pp 155–162

  • Swarnalatha PS, Kanakala M, Manasa S, Jalali Reddy MK (2013) Molecular characterization of tobacco curly shoots virus infecting tomato (Solanum lycopersicum L.) in India. Pest Manag Hort Ecosyst 19:73–84

    Google Scholar 

  • Usharani KS, Surendranath B, Haq QMR, Malathi VG (2004) Yellow mosaic virus infecting soyabean in northern India is distinct from the species infecting soyabean in southern and western India. Curr Sci 86:845–850

    CAS  Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  • Varma A, Mandal B, Singh MK (2011) Global emergence and spread of whitefly (Bemisia tabaci) transmitted geminiviruses. In: Thompson WMO (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer, Dordrecht, pp 205–292

    Chapter  Google Scholar 

  • Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:625–631

    Article  Google Scholar 

  • Wang HL, Sudarshana MR, Gilbertson RL, Lucas WJ (1999) Analysis of cell-to-cell and long-distance movement of a bean dwarf mosaic geminivirus-green fluorescent protein reporter in host and nonhost species: identification of sites of resistance. Mol Plant Microbe Interact 12:345–355

    Article  CAS  Google Scholar 

  • Yadav RK, Shukla RK, Chattopadhyay D (2009) Soybean cultivar resistant to Mungbean Yellow Mosaic India Virus infection induces viral RNA degradation earlier than the susceptible cultivar. Virus Res 144:89–95

    Article  CAS  PubMed  Google Scholar 

  • Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y (2007) Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res 16:385–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JB acknowledges Department of Biotechnology, Govt. of India.

Funding

The funding was provided by Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

NP, CC and JB envisioned the study and participated in its design and coordination. NP and CC carried out experimental work, statistical analysis of the data and wrote the final manuscript.

Corresponding author

Correspondence to Jolly Basak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patwa, N., Chatterjee, C. & Basak, J. Differential responses of Phaseolus vulgaris cultivars following mungbean yellow mosaic India virus infection. Physiol Mol Biol Plants 26, 817–828 (2020). https://doi.org/10.1007/s12298-019-00741-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00741-w

Keywords

Navigation