Skip to main content
Log in

Exogenously applied proline induced changes in key anatomical features and physio-biochemical attributes in water stressed oat (Avena sativa L.) plants

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Oat (Avena sativa) plants grown under 60% field capacity (water-deficit stress) were subjected to proline (40 mM) applied as a foliage spray. Water-deficit conditions suppressed plant growth, chlorophyll contents, leaf vascular bundle area, leaf phloem area and leaf midrib thickness, root diameter, root cortex thickness, stem diameter, stem vascular bundle area and stem phloem area. In contrast, water stress caused an increase in leaf proline, hydrogen peroxide, activities of peroxidase and superoxide dismutase enzymes, leaf bulliform cell area, leaf adaxial epidermis thickness, leaf sclerenchyma thickness, root metaxylem area, root epidermis and endodermis area, root stelar diameter, stem sclerenchyma thickness and stem epidermis thickness. However, exogenous application of proline significantly improved the plant growth, leaf proline contents, metaxylem area, mesophyll thickness, root diameter, root cortex thickness, root epidermis, endodermis thickness, stelar diameter, metaxylem area, stem diameter, stem vascular bundle area, stem epidermis area, stem phloem area and stem sclerenchyma thickness. Overall, foliar spray of proline was effective in improving drought stress tolerance which can be attributed to proline-induced significant modulations in physio-biochemical and anatomical features of oat plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants- a review. Plant Soil Environ 54(3):89–99

    Article  Google Scholar 

  • Ahmad P, Jhon R, Sarwat M, Umar S (2008) Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Prod 2(4):353–366

    CAS  Google Scholar 

  • Ahmad P, Abdel Latef A, Hashem A, Abd-Allah E, Gucel S, Tran LS (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P, Ashraf M (2018a) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72

    Article  CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Kumar A, Ashraf M (2018b) Upregulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium. J Plant Interact 13(1):151–162

    Article  CAS  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2011) Aminolevulinic acid-induced changes in yield and seed-oil characteristics of sunflower (Helianthus annuus L.) plants under salt stress. Pak J Bot 43:2845–2852

    CAS  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2012) Aminolevulinic acid-induced regulation in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) under saline regimes. Sci Hort 142:143–148

    Article  CAS  Google Scholar 

  • Akram NA, Shafiq S, Ashraf M, Aisha R, Sajid MA (2016) Drought-induced anatomical changes in radish (Raphanus sativus L.) leaves supplied with trehalose through different modes. Arid Land Res Manag 30(4):412–420

    Article  CAS  Google Scholar 

  • Al Hassan M, Fuertes MM, Sanchez FJR, Vicente O, Boscaiu M (2015) Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not Bot Horti Agrobot Cluj-Napoca 43:1–11

    Article  CAS  Google Scholar 

  • Ali Q, Ashraf M, Athar HUR (2007) Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot 39:1133–1144

    Google Scholar 

  • Ali Q, Anwar F, Ashraf M, Saari N, Perveen R (2013) Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. Int J Mol Sci 14(1):818–835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Al-Khalifah NS, Khan PR, Al-Abdulkader AM, Nasroun T (2006) Impact of water stress on the sapwood anatomy and functional morphology of Calligonum comosum. IAWA 27:299–312

    Article  Google Scholar 

  • Arnon DT (1949) Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35(3):146–189

    Article  CAS  Google Scholar 

  • Ashikari M, Feng-Ma J (2015) Exploring the power of plants to overcome environmental stresses. Rice 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Sci 39:205–207

    CAS  Google Scholar 

  • Boughalleb F, Abdellaoui R, Brahim N, Neffati M (2014) Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Cent Eur J Biol 12:1215–1225

    Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burnett SE, Pennisi SV, Thomas PA, Van-Iersel MW (2005) Controlled drought affects morphology and anatomy of Salvia splendens. J Am Soc Hort Sci 130:775–781

    Article  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Meth Enzymol 2:764–775

    Article  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  PubMed  CAS  Google Scholar 

  • Dolatabadian A, Modarres SAM, Sharifi M (2009) Effect of salicylic acid and salt on wheat seed germination. Acta Agric Scand Sect B Soil Plant Sci 59:456–464

    CAS  Google Scholar 

  • Earl HJ, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95(3):688–696

    Article  Google Scholar 

  • Ennajeh M, Vadel AM, Cochard H, Khemira H (2010) Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J Hort Sci Biotechnol 85:289–294

    Article  Google Scholar 

  • Fu Y, Ma H, Chen S, Gu T, Gong J (2018) Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J Exp Bot 69:579–588

    Article  PubMed  CAS  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126(3):1266–1274

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. J Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoque MA, Banu MN, Okuma E, Amako K, Nakamura Y, Shimoishi Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco bright yellow-2 suspension-cultured cells. J Plant Physiol 164:1457–1468

    Article  PubMed  CAS  Google Scholar 

  • Jarret RL (2014) Observations on anatomical aspects of the leaf, fruit and stem tissues of four Citrullus spp. Afr J Plant Sci 8:521–527

    Google Scholar 

  • Julkenen-Titto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Agric Food Chem 33:213–217

    Article  Google Scholar 

  • Kahlaoui B, Hachicha M, Rejeb S, Rejeb MN, Hanchi B, Misle E (2014) Response of two tomato cultivars to field-applied proline under irrigation with saline water: Growth, chlorophyll fluorescence and nutritional aspects. Photosynthetica 52:421–429

    Article  CAS  Google Scholar 

  • Kahlaoui B, Hachicha M, Misle E, Fidalgo F, Teixeira J (2018) Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. J Saudi Soc Agric Sci 17(1):17–23

    Google Scholar 

  • Kamran M, Shahbaz M, Ashraf M, Akram NA (2009) Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pak J Bot 41:621–632

    Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88(3):424–438

    Google Scholar 

  • Khan SH, Khan A, Lita U, Shah AB, Khan MA, Bilal M, Ali MU (2015) Effect of drought stress on tomato cv. Bombino. J Food Process Technol 6:1–6

    Article  CAS  Google Scholar 

  • Kosar F, Akram NA, Ashraf M (2015) Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. S Afr J Bot 96:71–77

    Article  CAS  Google Scholar 

  • Kutlu N, Terzi R, Tekeli C, Senel G, Battal P, Kadioglu A (2009) Changes in anatomical structure and levels of endogenous phytohormones during leaf rolling in Ctenanthe setosa. Turk J Biol 33:115–122

    CAS  Google Scholar 

  • Latif M, Akram NA, Ashraf M (2016) Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. J Hort Sci Biotechnol 91(2):129–137

    Article  CAS  Google Scholar 

  • Li H, Li X, Zhang D, Liu H, Guan K (2014) Effect of drought stress on the seed germination and early seedling growth of the epidemic desert plant Eremoaparton songoricum. EXCLI J1(2):89–101

    Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker D (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lum MS, Hanafi MM, Rafii YM, Akmar ASN (2014) Effect of drought stress on growth and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24:1487–1493

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712

    Article  PubMed  CAS  Google Scholar 

  • Moaveni P (2011) Effect of water deficit stress on some physiological traits of wheat (Triticum aestivum L.). Agric Sci Res J 1:64–68

    Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress induced changes in the levels of endogenous ascorbic acid and H2O2 in Vigna seedlings. Plant Physiol 58:166–170

    Article  CAS  Google Scholar 

  • Mukhtar A, Akram NA, Akram RA, Shafiq S, Ashraf M (2016) Foliar-applied ascorbic acid enhances antioxidative potential and drought tolerance in cauliflower (Brassica oleracea L. var. Botrytis). Agrochimica 60(2):100–113

    CAS  Google Scholar 

  • Naz N, Rafique T, Hameed M, Ashraf M, Batool R, Fatima S (2014) Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta Physiol Plant 36(11):2959–2974

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164(4):1636–1648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nounjan N, Theerakulpisut P (2012) Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ 58:309–315

    Article  CAS  Google Scholar 

  • Olmos E, Sanchez-Blanco MJ, Fernandez T, Alarcon JJ (2007) Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol 9:77–84

    Article  PubMed  CAS  Google Scholar 

  • Ovando-Martínez M, Whitney K, Reuhs BL, Doehlert DC, Simsek S (2013) Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Res Int 52:17–25

    Article  CAS  Google Scholar 

  • Pandy HC, Baig MJ, Chandra A, Bhatt RK (2010) Drought stress induced changes in liquid peroxidation and antioxidant system in genus Avena. J Environ Biol 31:435–440

    Google Scholar 

  • Pattanagul W (2011) Exogenous abscisic acid enhances sugar accumulation in rice. Asian J Plant Sci 10(3):212–219

    Article  CAS  Google Scholar 

  • Peng D, Wang X, Li Z, Zhang Y, Peng Y, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y (2015) NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. Protoplasma 253:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Pireivatloum J, Qasimov N, Maralian H (2010) Effect of soil water stress on yield and proline content of four wheat lines. Afr J Biotechnol 9:36–40

    Google Scholar 

  • Rahdari P, Hoseini SM (2012) Drought stress: a review. Int J Agron Plant Prod 3:443–446

    Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Saeed N, Maqbool N, Haseeb M, Sadiq R (2016) Morpho-anatomical changes in roots of chickpea (Cicer arietinum L.) under drought stress condition. J Agric Sci Technol 6:1–9

    Google Scholar 

  • Santarius KA (1992) Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol Plant 84:87–93

    Article  CAS  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M, Arshad A (2014) Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiol Plant 36:1539–1553

    Article  CAS  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hort 185:68–75

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shevyakova NI, Bakulina EA, Kuznetsov VI (2009) Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russ J Plant Physiol 56:663–669

    Article  CAS  Google Scholar 

  • Silva EC, Nogueira RJMC, Vale FHA, Melo NF, Araujo FP (2009) Water rela-tions and organic solutes production in four umbu tree (Spondias tuberosa) genotypes under intermittent drought. Braz J Plant Physiol 21:43–53

    Article  Google Scholar 

  • Songstad DD, Duncan DR, Wildholm JM (1990) Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J Exp Bot 41:289–294

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  PubMed  CAS  Google Scholar 

  • Szoke A, Miao GH, Hong Z, Verma DPS (1992) Subcellular location of D1-pyrroline-5 carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol 99:1642–1649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Taiz L, Zeiger E (2012) Plant physiology, 5th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Terletskaya N, Kurmanbayeva M (2017) Change in leaf anatomical parameters of seedlings of different wheat species under conditions of drought and salt stress. Pak J Bot 49(3):857–865

    CAS  Google Scholar 

  • Van Rossum MWPC, Alberda M, Van der Plas LHW (1997) Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci 130:207–216

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  PubMed  CAS  Google Scholar 

  • Zhang FJ, Zhang KK, Du CZ, Li J, Xing YX, Yang LT, Li RY (2015) Effect of drought stress on anatomical structure and chloroplast ultrastructure in leaves of sugarcane. Sugar Technol 17:41–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nudrat Aisha Akram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, R., Akram, N.A., Rashid, M. et al. Exogenously applied proline induced changes in key anatomical features and physio-biochemical attributes in water stressed oat (Avena sativa L.) plants. Physiol Mol Biol Plants 25, 1121–1135 (2019). https://doi.org/10.1007/s12298-019-00683-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00683-3

Keywords

Navigation