Skip to main content
Log in

Genome-wide transcriptome profiling of Carica papaya L. embryogenic callus

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Genome-wide transcriptome profiling is a powerful tool to study global gene expression patterns in plant development. We report the first transcriptome profile analysis of papaya embryogenic callus to improve our understanding on genes associated with somatic embryogenesis. By using 3′ mRNA-sequencing, we generated 6,190,687 processed reads and 47.0% were aligned to papaya genome reference, in which 21,170 (75.4%) of 27,082 annotated genes were found to be expressed but only 41% was expressed at functionally high levels. The top 10% of genes with high transcript abundance were significantly enriched in biological processes related to cell proliferation, stress response, and metabolism. Genes functioning in somatic embryogenesis such as SERK and LEA, hormone-related genes, stress-related genes, and genes involved in secondary metabolite biosynthesis pathways were highly expressed. Transcription factors such as NAC, WRKY, MYB, WUSCHEL, Agamous-like MADS-box protein and bHLH important in somatic embryos of other plants species were found to be expressed in papaya embryogenic callus. Abundant expression of enolase and ADH is consistent with proteome study of papaya somatic embryo. Our study highlights that some genes related to secondary metabolite biosynthesis, especially phenylpropanoid biosynthesis, were highly expressed in papaya embryogenic callus, which might have implication for cell factory applications. The discovery of all genes expressed in papaya embryogenic callus provides an important information into early biological processes during the induction of embryogenesis and useful for future research in other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

BAP:

Benzylaminopurine

bHLH:

Basic/HELIX–LOOP–HELIX

CPM:

Count per million

GO:

Gene ontology

GST:

Glutathione S-transferase

KEGG:

Kyoto encyclopaedia of genes and genomes

LEA:

Late embryogenesis abundant

NAA:

α-Naphthaleneacetic acid

PAL:

Phenylalanine ammonia lyase

SERK:

Somatic embryogenesis receptor-like kinase

References

  • Andriotis VM, Kruger NJ, Pike MJ, Smith AM (2010) Plastidial glycolysis in developing Arabidopsis embryos. New Phytol 185:649–662. doi:10.1111/j.1469-8137.2009.03113.x

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Katsumoto H, Inokuma C, Kaneko S, Ito Y, Fujiie A (1996) Cytokinin and thiamine requirements and stimulative effects of riboflavin and α-ketoglutaric acid on embryogenic callus induction from the seeds of Zoysia japonica steud. J Plant Physiol 149:413–417. doi:10.1016/S0176-1617(96)80142-8

    Article  CAS  Google Scholar 

  • Ascencio-Cabral A, Gutiérrez-Pulido H, Rodríguez-Garay B, Gutiérrez-Mora A (2008) Plant regeneration of Carica papaya L. through somatic embryogenesis in response to light quality, gelling agent and phloridzin. Sci Hortic 118:155–160

    Article  CAS  Google Scholar 

  • Baudino S et al (2001) Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya J, Khuspe S (2001) In vitro and in vivo germination of papaya (Carica papaya L.) seeds. Sci Hortic 91:39–49

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Chen C (1992) Plant regeneration from Carica protoplasts. Plant Cell Rep 11:404–407

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang P, Maeda E (1987) Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants. Plant Cell Rep 6:348–351

    Article  CAS  PubMed  Google Scholar 

  • Chen C-J, Liu Q, Zhang Y-C, Qu L-H, Chen Y-Q, Gautheret D (2011) Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8:538–547

    Article  CAS  PubMed  Google Scholar 

  • da Silva JAT, Rashid Z, Nhut DT, Sivakumar D, Gera A, Souza MT Jr, Tennant PF (2007) Papaya (Carica papaya L.) biology and biotechnology. Tree For Sci Biotechnol 1:47–73

    Google Scholar 

  • de Moura Vale E et al (2014) Comparative proteomic analysis of somatic embryo maturation in Carica papaya L. Proteom Sci 12:1

    Article  Google Scholar 

  • Elgadir MA, Salama M, Adam A (2014) Carica papaya as a source of natural medicine and its utilization on selected pharmacetical applications. Int J Pharm Pharm Sci 6:868–871

    Google Scholar 

  • Everett N, Wach M, Ashworth D (1985) Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73. Plant Sci 41:133–140

    Article  CAS  Google Scholar 

  • Fabi JP, Mendes LRBC, Lajolo FM, do Nascimento JRO (2010) Transcript profiling of papaya fruit reveals differentially expressed genes associated with fruit ripening. Plant Sci 179:225–233

    Article  CAS  Google Scholar 

  • Fabi JP, Broetto SG, da Silva SLGL, Zhong S, Lajolo FM, do Nascimento JRO (2014) Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening. PLoS ONE 9:e105685

    Article  PubMed  PubMed Central  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org Cult 74:201–228. doi:10.1023/a:1024033216561

    Article  Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 12:245–249

    Article  CAS  PubMed  Google Scholar 

  • Fransz P, De Ruijter N, Schel J (1989) Isozymes as biochemical and cytochemical markers in embryogenic callus cultures of maize (Zea mays L.). Plant Cell Rep 8:67–70

    Article  CAS  PubMed  Google Scholar 

  • Galland R, Blervacq A-S, Blassiau C, Smagghe B, Decottignies J-P, Hilbert J-L (2007) Glutathione-S-transferase is detected during somatic embryogenesis in chicory. Plant Signal Behav 2:343–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao L, Zhang J, Hou Y, Yao Y, Ji Q (2015) RNA-seq screening of differentially-expressed genes during somatic embryogenesis in Fragaria x ananassa Duch. ‘Benihopp’. J Hortic Sci Biotechnol 90:671–681

    Article  Google Scholar 

  • Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE 8:e69261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Z, Lin Y (2013) Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing. BMC Genom 14:1

    Article  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H-C, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, Tranbarger TJ (2009) Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Mol Biol 70:173–192

    Article  CAS  PubMed  Google Scholar 

  • Litz RE, Conover RA (1981) In vitro polyembryony in Carica papaya L. ovules. Z Pflanzenphysiol 104:285–288

    Article  Google Scholar 

  • Litz R, Conover R (1982) In vitro somatic embryogenesis and plant regeneration from Carica papaya L. ovular callus. Plant Sci Lett 26:153–158

    Article  CAS  Google Scholar 

  • Ma Q, Zhou W, Zhang P (2014) Transition from somatic embryo to friable embryogenic callus in cassava: dynamic changes in cellular structure, physiological status, and gene expression profiles. Front Plant Sci 6:824

    Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: A cytoscape plugin to assess overrepresentation of geneontology categories in biological networks. Bioinformatics 21:3448–3449. doi:10.1093/bioinformatics/bti551

    Article  CAS  PubMed  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356. doi:10.1007/s00299-007-0438-0

    Article  CAS  PubMed  Google Scholar 

  • Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll P, Ante M, Seitz A, Reda T (2014) QuantSeq 3′ mRNA sequencing for RNA quantification. Nat Methods. doi:10.1038/nmeth.f.376

    Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. doi:10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piyatrakul P et al (2012) Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol 12:1

    Article  Google Scholar 

  • Porter BW, Aizawa KS, Zhu YJ, Christopher DA (2008) Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. Plant Sci 174:38–50. doi:10.1016/j.plantsci.2007.09.013

    Article  CAS  Google Scholar 

  • Redig P, Shaul O, Inzé D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Meth 10:71–73. doi:10.1038/nmeth.2251

    Article  CAS  Google Scholar 

  • Salvo SA, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE 9:e111407

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt E, Guzzo F, Toonen M, De Vries S (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68:185–201

    Article  CAS  PubMed  Google Scholar 

  • Sun D-Q, Lu X-H, Liang G-L, Guo Q-G, Mo Y-W, Xie J-H (2011) Production of triploid plants of papaya by endosperm culture. Plant Cell Tissue Org Cult 104:23–29

    Article  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urasaki N et al (2012) Digital transcriptome analysis of putative sex-determination genes in (Carica papaya). PLoS ONE 7:e40904. doi:10.1371/journal.pone.0040904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genom 16:1

    Article  CAS  Google Scholar 

  • Xie C et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. doi:10.1093/nar/gkr483

    Google Scholar 

  • Xu K, Liu J, Fan M, Xin W, Hu Y, Xu C (2012) A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics 100:116–124

    Article  CAS  PubMed  Google Scholar 

  • Ye J et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. doi:10.1093/nar/gkl031

    Google Scholar 

  • Yu T-A, Yeh S-D, Cheng Y-H, Yang J-S (2000) Efficient rooting for establishment of papaya plantlets by micropropagation. Plant Cell Tissue Org Cult 61:29–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kok-Keong Loke for helping with the RNA-seq analysis by generating the modified papaya genome reference for read alignment. This research was supported by the Malaysian Ministry of Science, Technology and Innovation (MOSTI) Sciencefund Grant 02-01-02-SF0907 and Universiti Kebangsaan Malaysia Research University Grant (GGPM-2011-053).

Authors Contributions

NDJ and HHG conceived and designed the experiments. NDJ performed the experiments. NDJ and HHG analysed the data. NDJ, NMN and HHG wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoe-Han Goh.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests. There is no restriction on publication of the data or information described in this manuscript.

Ethical approval

This study was conducted according to compliance with ethical standards. This study does not involve the use of any human, animal and endangered or protected plant species as materials.

Additional information

The collection of sequences generated in this study is available under NCBI BioProject accession PRJNA323966 and Sequence Read Archive (SRA) database (Accession Numbers SRR4087172 and SRR4087196).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 13152 kb)

Supplementary material 2 (PDF 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamaluddin, N.D., Mohd Noor, N. & Goh, HH. Genome-wide transcriptome profiling of Carica papaya L. embryogenic callus. Physiol Mol Biol Plants 23, 357–368 (2017). https://doi.org/10.1007/s12298-017-0429-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0429-8

Keywords

Navigation