Skip to main content
Log in

Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review

  • REVIEW ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting multiple signaling pathways in cancer: the rutin therapeutic approach. Cancers. 2020;12(8):2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilbertson RJ. Mapping cancer origins. Cell. 2011;145(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh AK, Bishayee A, Pandey AK. Targeting histone deacetylases with natural and synthetic agents: an emerging anticancer strategy. Nutrients. 2018;10(6):731.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moar K, Pant A, Saini V, Maurya PK. Potential biomarkers in endometrial cancer: a narrative review. Biomarkers. 2023;28(4):358–71.

    Article  CAS  PubMed  Google Scholar 

  5. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    Article  CAS  PubMed  Google Scholar 

  6. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett. 2018;413:122–34.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Zheng J, Li Y, Xu D-P, Li S, Chen Y-M, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016;8(8):515.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fu L, Xu B-T, Xu X-R, Qin X-S, Gan R-Y, Li H-B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules. 2010;15(12):8602–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng G-F, Lin X, Xu X-R, Gao L-L, Xie J-F, Li H-B. Antioxidant capacities and total phenolic contents of 56 vegetables. J Funct Foods. 2013;5(1):260–6.

    Article  CAS  Google Scholar 

  10. Spencer JP, Abd El Mohsen MM, Minihane A-M, Mathers JC. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr. 2008;99(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  11. Nacka-Aleksić M, Pirković A, Vilotić A, Bojić-Trbojević Ž, Jovanović Krivokuća M, Giampieri F, et al. The role of dietary polyphenols in pregnancy and pregnancy-related disorders. Nutrients. 2022;14(24):5246.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, et al. Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr. 2020;60(4):626–59.

    Article  CAS  PubMed  Google Scholar 

  13. Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules. 2021;26(2):453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pereira L, Cotas JJ. Therapeutic potential of polyphenols and other micronutrients of marine origin. Mar Drugs. 2023;21(6):323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li H-B. Dietary natural products for prevention and treatment of liver cancer. Nutrients. 2016;8(3):156.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patra S, Pradhan B, Nayak R, Behera C, Das S, Patra SK, et al. Dietary polyphenols in chemoprevention and synergistic effect in cancer: clinical evidences and molecular mechanisms of action. Phytomedicine. 2021;90:153554.

    Article  CAS  PubMed  Google Scholar 

  17. Valletta A, Iozia LM, Leonelli F. Impact of environmental factors on stilbene biosynthesis. Plants. 2021;10(1):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:1–16.

    Google Scholar 

  19. de Groot H, Rauen U. Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam Clin Pharmacol. 1998;12(3):249–55.

    Article  PubMed  Google Scholar 

  20. Roche A, Ross E, Walsh N, O’Donnell K, Williams A, Klapp M, et al. Representative literature on the phytonutrients category: phenolic acids. Crit Rev Food Sci Nutr. 2017;57(6):1089–96.

    Article  CAS  PubMed  Google Scholar 

  21. Adlercreutz H, Mazur W. Phyto-oestrogens and Western diseases. Ann Med. 1997;29(2):95–120.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, et al. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res. 2009;1:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010;70(22):9003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Howells LM, Berry D, Elliott P, Jacobson E, Hoffmann E, Hegarty B, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases—safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res. 2011;4(9):1419–25.

    Article  CAS  Google Scholar 

  25. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, et al. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol. 2013;160(5):714–7.

    Article  CAS  PubMed  Google Scholar 

  26. Seufferlein T, Ettrich TJ, Menzler S, Messmann H, Kleber G, Zipprich A, et al. Green tea extract to prevent colorectal adenomas, results of a randomized, placebo-controlled clinical trial. Am J Gastroenterol. 2022;117(6):884–94.

    Article  PubMed  Google Scholar 

  27. Zhao H, Zhu W, Zhao X, Li X, Zhou Z, Zheng M, et al. Efficacy of Epigallocatechin-3-gallate in preventing dermatitis in patients with breast cancer receiving postoperative radiotherapy: a double-blind, placebo-controlled, phase 2 randomized clinical trial. JAMA Dermatol. 2022;158(7):779–86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Porcaro G, Santamaria A, Giordano D, Angelozzi P. Vitamin D plus epigallocatechin gallate: a novel promising approach for uterine myomas. Eur Rev Med Pharmacol Sci. 2020;24(6):3344–51.

    CAS  PubMed  Google Scholar 

  29. Nuñez-Sánchez MA, González-Sarrías A, García-Villalba R, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, et al. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: a randomized clinical trial. J Nutr Biochem. 2017;42:126–33.

    Article  PubMed  Google Scholar 

  30. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14(14):4491–9.

    Article  CAS  PubMed  Google Scholar 

  31. Thambamroong T, Seetalarom K, Saichaemchan S, Pumsutas Y, Prasongsook N. Efficacy of curcumin on treating cancer anorexia-cachexia syndrome in locally or advanced head and neck cancer: a double-blind, placebo-controlled randomised phase IIa trial (CurChexia). J Nutr Metab. 2022;2022:5425619.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Howells LM, Iwuji COO, Irving GRB, Barber S, Walter H, Sidat Z, et al. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr. 2019;149(7):1133–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zwicker JI, Schlechter BL, Stopa JD, Liebman HA, Aggarwal A, Puligandla M, et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight. 2019;4(4):125851.

    Article  PubMed  Google Scholar 

  34. Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol. 2019;66(1):13–21.

    CAS  PubMed  Google Scholar 

  35. Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci. 2019;20(7):1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, et al. Potential adverse effects of resveratrol: a literature review. Int J Mol Sci. 2020;21(6):2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hecker A, Schellnegger M, Hofmann E, Luze H, Nischwitz SP, Kamolz LP, et al. The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J. 2022;19(1):9–28.

    Article  PubMed  Google Scholar 

  38. Ren B, Kwah MX-Y, Liu C, Ma Z, Shanmugam MK, Ding L, et al. Resveratrol for cancer therapy: challenges and future perspectives. Cancer Lett. 2021;515:63–72.

    Article  CAS  PubMed  Google Scholar 

  39. Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer. 2014;21(3):R209–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS, et al. Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr. 2018;58(9):1428–47.

    Article  PubMed  Google Scholar 

  41. Zhong Z, Guo X, Zheng YJ. Network pharmacology-based and molecular docking analysis of resveratrol’s pharmacological effects on type I endometrial cancer. Anti-Cancer Agents Med Chem. 2022;22(10):1933.

    Article  CAS  Google Scholar 

  42. Xu J, Liu D, Niu H, Zhu G, Xu Y, Ye D, et al. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2017;36:1–14.

    Article  Google Scholar 

  43. Chen C-Y, Kao C-L, Liu C-M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. IJMS. 2018;19(9):2729.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Singh AK, Singh SV, Kumar R, Kumar S, Senapati S, Pandey AK. Current therapeutic modalities and chemopreventive role of natural products in liver cancer: progress and promise. World J Hepatol. 2023;15(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vernousfaderani EK, Akhtari N, Rezaei S, Rezaee Y, Shiranirad S, Mashhadi M, et al. Resveratrol and colorectal cancer: a molecular approach to clinical researches. Curr Top Med Chem. 2021;21(29):2634–46.

    Article  CAS  PubMed  Google Scholar 

  46. Ferruelo A, de Las Heras M, Redondo C, de Fata FR, Romero I, Angulo J. Wine polyphenols exert antineoplasic effect on androgen resistant PC-3 cell line through the inhibition of the transcriptional activity of COX-2 promoter mediated by NF-κβ. Actas Urol Esp Engl Ed. 2014;38(7):429–37.

    Article  CAS  Google Scholar 

  47. Tang H-Y, Shih A, Cao HJ, Davis FB, Davis PJ, Lin H-Y. Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Therap. 2006;5(8):2034–42.

    Article  CAS  Google Scholar 

  48. Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol. 2016;40–41:48–81.

    Article  PubMed  Google Scholar 

  49. Li J, Fan Y, Zhang Y, Liu Y, Yu Y, Ma M. Resveratrol induces autophagy and apoptosis in non-small-cell lung cancer cells by activating the NGFR-AMPK-mTOR pathway. Nutrients. 2022;14(12):2413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim E, Hwang K, Lee J, Han SY, Kim E-M, Park J, et al. Skin protective effect of epigallocatechin gallate. Int J Mol Sci. 2018;19(1):173.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Botten D, Fugallo G, Fraternali F, Molteni C. Structural properties of green tea catechins. J Phys Chem. 2015;119(40):12860–7.

    Article  CAS  Google Scholar 

  52. Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I. The relationship between the structure and biological actions of green tea catechins. Food Chem. 2013;141(3):3282–9.

    Article  CAS  PubMed  Google Scholar 

  53. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y, et al. Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med. 1996;21(6):895–902.

    Article  CAS  PubMed  Google Scholar 

  54. Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. IJMS. 2022;24(1):340.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Farhan M. Green tea catechins: nature’s way of preventing and treating cancer. Int J Mol Sci. 2022;23(18):10713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khan MA, Hussain A, Sundaram MK, Alalami U, Gunasekera D, Ramesh L, et al. (−)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep. 2015;33(4):1976–84.

    Article  CAS  PubMed  Google Scholar 

  57. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71(10):1397–421.

    Article  CAS  PubMed  Google Scholar 

  58. Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci. 2020;21(5):1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Negri A, Naponelli V, Rizzi F, Bettuzzi S. Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer. Nutrients. 2018;10(12):1936.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pandey M, Shukla S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer. 2010;126(11):2520–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ann Beltz L, Kay Bayer D, Lynn Moss A, Mitchell Simet I. Mechanisms of cancer prevention by green and black tea polyphenols. Anti-Cancer Agents Med Chem. 2006;6(5):389–406.

    Article  Google Scholar 

  62. Min NY, Kim J-H, Choi J-H, Liang W, Ko YJ, Rhee S, et al. Selective death of cancer cells by preferential induction of reactive oxygen species in response to (−)-epigallocatechin-3-gallate. Biochem Biophys Res Commun. 2012;421(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  63. Piwowarczyk L, Stawny M, Mlynarczyk DT, Muszalska-Kolos I, Goslinski T, Jelińska A. Role of curcumin and (−)-Epigallocatechin-3-O-gallate in bladder cancer treatment: a review. Cancers. 2020;12(7):1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xiao X, Jiang K, Xu Y, Peng H, Wang Z, Liu S, et al. (−)-Epigallocatechin-3-gallate induces cell apoptosis in chronic myeloid leukaemia by regulating Bcr/Abl-mediated p38-MAPK/JNK and JAK 2/STAT 3/AKT signalling pathways. Clin Exp Pharma Physiol. 2019;46(2):126–36.

    Article  CAS  Google Scholar 

  65. Jian W, Fang S, Chen T, Fang J, Mo Y, Li D, et al. A novel role of HuR in-Epigallocatechin-3-gallate (EGCG) induces tumour cells apoptosis. J Cell Mol Med. 2019;23(5):3767.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li A, Gu K, Wang Q, Chen X, Fu X, Wang Y, et al. Epigallocatechin-3-gallate affects the proliferation, apoptosis, migration and invasion of tongue squamous cell carcinoma through the hippo-TAZ signaling pathway. Int J Mol Med. 2018;42(5):2615–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu D, Liu Z, Li J, Zhang Q, Zhong P, Teng T, et al. Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK signaling pathway. Cancer Cell Int. 2019;19:1–17.

    Article  Google Scholar 

  68. Kuo P-L, Lin C-C. Green tea constituent (−)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci. 2003;10:219–27.

    CAS  PubMed  Google Scholar 

  69. Ahmad N, Katiyar SK, Mukhtar H. Antioxidants in chemoprevention of skin cancer. Oxid Antioxid Cutaneous Biol. 2001;29:128–39.

    Article  CAS  Google Scholar 

  70. Nagel KA, Kastenholz B, Gilmer F, Schurr U, Walter A. Novel detection system for plant protein production of pharmaceuticals and impact on conformational diseases. Protein Pept Lett. 2010;17(6):723–31.

    Article  CAS  PubMed  Google Scholar 

  71. Patel K, Patel DK. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: a systematic review and update. Bioactive food as dietary interventions for arthritis and related inflammatory diseases; 2019. p. 457–79.

  72. Nasri Nasrabadi P, Zareian S, Nayeri Z, Salmanipour R, Parsafar S, Gharib E, et al. A detailed image of rutin underlying intracellular signaling pathways in human SW480 colorectal cancer cells based on miRNAs-lncRNAs-mRNAs-TFs interactions. J Cell Physiol. 2019;234(9):15570–80.

    Article  CAS  PubMed  Google Scholar 

  73. Santos BL, Silva AR, Pitanga BP, Sousa CS, Grangeiro MS, Fragomeni BO, et al. Antiproliferative, proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells. Food Chem. 2011;127(2):404–11.

    Article  CAS  PubMed  Google Scholar 

  74. Pandey P, Khan F, Qari HA, Oves M. Rutin (bioflavonoid) as cell signaling pathway modulator: prospects in treatment and chemoprevention. Pharmaceuticals. 2021;14(11):1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ben Sghaier M, Pagano A, Mousslim M, Ammari Y, Kovacic H, Luis J. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed pharmacother. 2016;84:1972–8.

    Article  CAS  PubMed  Google Scholar 

  76. Karakurt S. Modulatory effects of rutin on the expression of cytochrome P450s and antioxidant enzymes in human hepatoma cells. Acta Pharm. 2016;66(4):491–502.

    Article  CAS  PubMed  Google Scholar 

  77. Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z. Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evid Based Complement Altern Med. 2021;2021:9913179.

    Article  Google Scholar 

  78. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–91.

    Article  CAS  PubMed  Google Scholar 

  79. Yammine A, Namsi A, Vervandier-Fasseur D, Mackrill JJ, Lizard G, Latruffe N. Polyphenols of the mediterranean diet and their metabolites in the prevention of colorectal cancer. Molecules. 2021;26(12):3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huo M, Xia A, Cheng W, Zhou M, Wang J, Shi T, et al. Rutin promotes pancreatic cancer cell apoptosis by upregulating miRNA-877-3p expression. Molecules. 2022;27(7):2293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Choi K-S, Kundu JK, Chun K-S, Na H-K, Surh Y-J. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets. Arch Biochem Biophys. 2014;559:38–45.

    Article  CAS  PubMed  Google Scholar 

  82. Li H, Ji H-S, Kang J-H, Shin D-H, Park H-Y, Choi M-S, et al. Soy leaf extract containing kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic β-cell function and suppressing hepatic lipid accumulation in db/db mice. J Agric Food Chem. 2015;63(32):7198–210.

    Article  CAS  PubMed  Google Scholar 

  83. Singh D, Kumari K, Ahmed S. Chapter 17-Natural herbal products for cancer therapy. In: Jain B, Pandey S, editors. Understanding cancer. London: Academic Press; 2022. p. 257–68.

    Chapter  Google Scholar 

  84. Shields M. Chapter 14-Chemotherapeutics. In: Badal S, Delgoda R, editors. Pharmacognosy. Boston: Academic Press; 2017. p. 295–313.

    Chapter  Google Scholar 

  85. Gunawardena D, Govindaraghavan S, Münch G. Chapter 30-Anti-inflammatory properties of cinnamon polyphenols and their monomeric precursors. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols in human health and disease. San Diego: Academic Press; 2014. p. 409–25.

    Chapter  Google Scholar 

  86. Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, et al. Kaempferol: a key emphasis to its anticancer potential. Molecules. 2019;24(12):2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front Pharmacol. 2021;12:710304.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Diantini A, Subarnas A, Lestari K, Halimah E, Susilawati Y, Supriyatna, et al. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol Lett. 2012;3(5):1069–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li S, Yan T, Deng R, Jiang X, Xiong H, Wang Y, et al. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. OncoTargets Ther. 2017;10:4809–19.

    Article  Google Scholar 

  90. Kim BW, Lee ER, Min HM, Jeong HS, Ahn JY, Kim JH, et al. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol Ther. 2008;7(7):1080–9.

    Article  CAS  PubMed  Google Scholar 

  91. Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther. 2007;6(9):2544–53.

    Article  CAS  PubMed  Google Scholar 

  92. Lin CW, Chen PN, Chen MK, Yang WE, Tang CH, Yang SF, et al. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS ONE. 2013;8(11):e80883.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR pathway by different flavonoids: a cancer chemopreventive approach. Int J Mol Sci. 2021;22(22):12455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim KY, Jang WY, Lee JY, Jun do Y, Ko JY, Yun YH, et al. Kaempferol activates G2-checkpoint of the cell cycle resulting in G2-arrest and mitochondria-dependent apoptosis in human acute leukemia jurkat T cells. J Microbiol Biotechnol. 2016;26(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  95. Abdelkader NF, Elyamany M, Gad AM, Assaf N, Fawzy HM, Elesawy WH. Ellagic acid attenuates liver toxicity induced by valproic acid in rats. J Pharmacol Sci. 2020;143(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  96. Derosa G, Maffioli P, Sahebkar A. Ellagic acid and its role in chronic diseases. Adv Exp Med Biol. 2016;928:473–9.

    Article  CAS  PubMed  Google Scholar 

  97. Djedjibegovic J, Marjanovic A, Panieri E, Saso L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid Med Cell Longev. 2020;2020:5194508.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Baradaran Rahimi V, Ghadiri M, Ramezani M, Askari VR. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: evidence from cellular, animal, and clinical studies. Phytother Res. 2020;34(4):685–720.

    Article  PubMed  Google Scholar 

  99. Yoganathan S, Alagaratnam A, Acharekar N, Kong J. Ellagic acid and schisandrins: natural biaryl polyphenols with therapeutic potential to overcome multidrug resistance in cancer. Cells. 2021;10(2):458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang HM, Zhao L, Li H, Xu H, Chen WW, Tao L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med. 2014;11(2):92–100.

    PubMed  PubMed Central  Google Scholar 

  101. Bell C, Hawthorne S. Ellagic acid, pomegranate and prostate cancer—a mini review. J Pharm Pharmacol. 2008;60(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  102. Yousuf M, Shamsi A, Khan P, Shahbaaz M, AlAjmi MF, Hussain A, et al. Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. Int J Mol Sci. 2020;21(10):3526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ceci C, Tentori L, Atzori MG, Lacal PM, Bonanno E, Scimeca M, et al. Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth. Nutrients. 2016;8(11):744.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kim JY, Choi YJ, Kim HJ. Determining the effect of ellagic acid on the proliferation and migration of pancreatic cancer cell lines. Transl Cancer Res. 2021;10(1):424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jaman MS, Sayeed MA. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives. Breast Cancer. 2018;25(5):517–28.

    Article  PubMed  Google Scholar 

  106. Wu YS, Ho JY, Yu CP, Cho CJ, Wu CL, Huang CS, et al. Ellagic acid resensitizes gemcitabine-resistant bladder cancer cells by inhibiting epithelial-mesenchymal transition and gemcitabine transporters. Cancers. 2021;13(9):2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang N, Wang ZY, Mo SL, Loo TY, Wang DM, Luo HB, et al. Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res Treat. 2012;134(3):943–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhong C, Qiu S, Li J, Shen J, Zu Y, Shi J, et al. Ellagic acid synergistically potentiates inhibitory activities of chemotherapeutic agents to human hepatocellular carcinoma. Phytomedicine. 2019;59:152921.

    Article  CAS  PubMed  Google Scholar 

  109. Deepika, Maurya PK. Ellagic acid: insight into its protective effects in age-associated disorders. 3 Biotech. 2022;12(12):340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang Y, Ren F, Li B, Song Z, Chen P, Ouyang L. Ellagic acid exerts antitumor effects via the PI3K signaling pathway in endometrial cancer. J Cancer. 2019;10(15):3303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang Q, Ou Y, Hu G, Wen C, Yue S, Chen C, et al. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-kappaB pathway in mice. Br J Pharmacol. 2020;177(8):1806–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, et al. Naringenin: a flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother. 2023;164:114990.

    Article  CAS  PubMed  Google Scholar 

  113. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rashmi R, Bojan Magesh S, Mohanram Ramkumar K, Suryanarayanan S, Venkata SM. Antioxidant potential of naringenin helps to protect liver tissue from streptozotocin-induced damage. Rep Biochem Mol Biol. 2018;7(1):76–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Liaquat L, Batool Z, Sadir S, Rafiq S, Shahzad S, Perveen T, et al. Naringenin-induced enhanced antioxidant defence system meliorates cholinergic neurotransmission and consolidates memory in male rats. Life Sci. 2018;194:213–23.

    Article  CAS  PubMed  Google Scholar 

  116. Yao W, Zhang X, Xu F, Cao C, Liu T, Xue Y. The therapeutic effects of naringenin on bronchial pneumonia in children. Pharmacol Res Perspect. 2021;9(4):e00825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Du Y, Ma J, Fan Y, Wang X, Zheng S, Feng J, et al. Naringenin: a promising therapeutic agent against organ fibrosis. Oxid Med Cell Longev. 2021;2021:1210675.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: a promising treatment strategy against COVID-19. Phytother Res. 2020;34(12):3137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019;12(1):11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hernandez-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol. 2018;24(16):1679–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hermenean A, Ardelean A, Stan M, Hadaruga N, Mihali CV, Costache M, et al. Antioxidant and hepatoprotective effects of naringenin and its beta-cyclodextrin formulation in mice intoxicated with carbon tetrachloride: a comparative study. J Med Food. 2014;17(6):670–7.

    Article  CAS  PubMed  Google Scholar 

  122. Gandhi GR, Vasconcelos ABS, Wu DT, Li HB, Antony PJ, Li H, et al. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: a systematic review of in vitro and in vivo studies. Nutrients. 2020;12(10):2907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kausar H, Jeyabalan J, Aqil F, Chabba D, Sidana J, Singh IP, et al. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett. 2012;325(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  124. Liu W, Xu J, Wu S, Liu Y, Yu X, Chen J, et al. Selective anti-proliferation of HER2-positive breast cancer cells by anthocyanins identified by high-throughput screening. PLoS ONE. 2013;8(12):e81586.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lu H-F, Chie Y-J, Yang M-S, Lu K-W, Fu J-J, Yang J-S, et al. Apigenin induces apoptosis in human lung cancer H460 cells through caspase-and mitochondria-dependent pathways. Hum Exp Toxicol. 2011;30(8):1053–61.

    Article  CAS  PubMed  Google Scholar 

  126. Chen J, Chen J, Li Z, Liu C, Yin LJTB. The apoptotic effect of apigenin on human gastric carcinoma cells through mitochondrial signal pathway. Tumor Biol. 2014;35:7719–26.

    Article  CAS  Google Scholar 

  127. Chunhua L, Donglan L, Xiuqiong F, Lihua Z, Qin F, Yawei L, et al. Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem. 2013;24(10):1766–75.

    Article  PubMed  Google Scholar 

  128. Tseng TH, Chien MH, Lin WL, Wen YC, Chow JM, Chen CK, et al. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression. Environ Toxicol. 2017;32(2):434–44.

    Article  CAS  PubMed  Google Scholar 

  129. Shukla S, Bhaskaran N, Babcook MA, Fu P, MacLennan GT, Gupta SJC. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis. 2014;35(2):452–60.

    Article  CAS  PubMed  Google Scholar 

  130. Shao J, Zhang A, Qin W, Zheng L, Zhu Y, Chen XJB, et al. AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells. Biochem Biophys Res Commun. 2012;423(3):448–53.

    Article  CAS  PubMed  Google Scholar 

  131. Ronnekleiv-Kelly SM, Nukaya M, Díaz-Díaz CJ, Megna BW, Carney PR, Geiger PG, et al. Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells. Cancer Lett. 2016;370(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  132. Cai X, Ye T, Liu C, Lu W, Lu M, Zhang J, et al. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol In Vitro. 2011;25(7):1385–91.

    Article  CAS  PubMed  Google Scholar 

  133. Ruan J, Zhang L, Yan L, Liu Y, Yue Z, Chen L, et al. Inhibition of hypoxia-induced epithelial mesenchymal transition by luteolin in non-small cell lung cancer cells. Mol Med Rep. 2012;6(1):232–8.

    CAS  PubMed  Google Scholar 

  134. Lu J, Li G, He K, Jiang W, Xu C, Li Z, et al. Luteolin exerts a marked antitumor effect in cMet-overexpressing patient-derived tumor xenograft models of gastric cancer. J Transl Med. 2015;13:1–11.

    Article  CAS  Google Scholar 

  135. Lim DY, Cho HJ, Kim J, Nho CW, Lee KW, Park JHY. Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells. BMC Gastroenterol. 2012;12(1):1–10.

    Article  Google Scholar 

  136. Tsui KH, Chung LC, Feng TH, Chang PL, Juang HH. Upregulation of prostate-derived Ets factor by luteolin causes inhibition of cell proliferation and cell invasion in prostate carcinoma cells. J Cancer. 2012;130(12):2812–23.

    CAS  Google Scholar 

  137. Tian T, Li J, Li B, Wang Y, Li M, Ma D, et al. Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells. Tumor Biol. 2014;35:4137–45.

    Article  CAS  Google Scholar 

  138. Qin J, Teng J, Zhu Z, Chen J, Huang WJ. Genistein induces activation of the mitochondrial apoptosis pathway by inhibiting phosphorylation of Akt in colorectal cancer cells. Pharm Biol. 2016;54(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  139. Xiao X, Liu Z, Wang R, Wang J, Zhang S, Cai X, et al. Genistein suppresses FLT4 and inhibits human colorectal cancer metastasis. Oncotarget. 2015;6(5):3225.

    Article  PubMed  Google Scholar 

  140. Dai W, Wang F, He L, Lin C, Wu S, Chen P, et al. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol Carcinog. 2015;54(4):301–11.

    Article  CAS  PubMed  Google Scholar 

  141. Pan H, Zhou W, He W, Liu X, Ding Q, Ling L, et al. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int J Mol Med. 2012;30(2):337–43.

    Article  CAS  PubMed  Google Scholar 

  142. Mahmoud AM, Zhu T, Parray A, Siddique HR, Yang W, Saleem M, et al. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor. PLoS ONE. 2013;8(10):e78479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hussain A, Harish G, Prabhu SA, Mohsin J, Khan MA, Rizvi TA, et al. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitiors of matrix metalloproteinase-1 expression. Cancer Epidemiol. 2012;36(6):e387–93.

    Article  CAS  PubMed  Google Scholar 

  144. Moon D, McCormack D, McDonald D, McFadden DJ. Pterostilbene induces mitochondrially derived apoptosis in breast cancer cells in vitro. J Surg Res. 2013;180(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  145. Dhar S, Kumar A, Rimando AM, Zhang X, Levenson AS. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget. 2015;6(29):27214.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhang J, Wu D, Vikash, Song J, Wang J, Yi J, et al. Hesperetin induces the apoptosis of gastric cancer cells via activating mitochondrial pathway by increasing reactive oxygen species. Dig Dis Sci. 2015;60:2985–95.

    Article  CAS  PubMed  Google Scholar 

  147. Aranganathan S, Nalini NJ. Retracted: Antiproliferative efficacy of hesperetin (citrus flavanoid) in 1,2-dimethylhydrazine-induced colon cancer. Phytother Res. 2013;27(7):999–1005.

    Article  CAS  PubMed  Google Scholar 

  148. Palit S, Kar S, Sharma G, Das PK. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol. 2015;230(8):1729–39.

    Article  CAS  PubMed  Google Scholar 

  149. Yang Y, Wolfram J, Boom K, Fang X, Shen H, Ferrari MJ, et al. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem Funct. 2013;31(5):374–9.

    Article  CAS  PubMed  Google Scholar 

  150. Sambantham S, Radha M, Paramasivam A, Anandan B, Malathi R, Chandra SR, et al. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev. 2013;14(7):4347–52.

    Article  PubMed  Google Scholar 

  151. Alshatwi AA, Ramesh E, Periasamy V, Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27(6):581–92.

    Article  CAS  PubMed  Google Scholar 

  152. Feng J, Chen X, Wang Y, Du Y, Sun Q, Zang W, et al. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol Cell Biochem. 2015;408:163–70.

    Article  CAS  PubMed  Google Scholar 

  153. Kim ME, Ha TK, Yoon JH, Lee JS. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res. 2014;34(2):701–6.

    CAS  PubMed  Google Scholar 

  154. Iyer SC, Gopal A, Halagowder D. Myricetin induces apoptosis by inhibiting P21 activated kinase 1 (PAK1) signaling cascade in hepatocellular carcinoma. Mol Cell Biochem. 2015;407:223–37.

    Article  CAS  PubMed  Google Scholar 

  155. Ho H-H, Chang C-S, Ho W-C, Liao S-Y, Lin W-L, Wang C-J, et al. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol Appl Pharmacol. 2013;266(1):76–85.

    Article  CAS  PubMed  Google Scholar 

  156. Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E, Muhamad II. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol. 2016;22(15):3952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sun G, Zhang S, Xie Y, Zhang Z, Zhao W. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol Lett. 2016;11(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  158. Liu K-C, Huang A-C, Wu P-P, Lin H-Y, Chueh F-S, Yang J-S, et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and-9 signaling pathways. Oncol Rep. 2011;26(1):177–84.

    PubMed  Google Scholar 

  159. Zhao B, Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol Lett. 2013;6(6):1749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Deng P, Wang C, Chen L, Wang C, Du Y, Yan X, et al. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2. Biol Pharm Bull. 2013;36(10):1540–8.

    Article  CAS  PubMed  Google Scholar 

  161. Lee C-C, Liu K-J, Wu Y-C, Lin S-J, Chang C-C, Huang T-S. Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells. Inflammation. 2011;34:209–21.

    Article  CAS  PubMed  Google Scholar 

  162. Xu P, Cai F, Liu X, Guo L. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells. Oncol Rep. 2015;33(6):3117–23.

    Article  CAS  PubMed  Google Scholar 

  163. Yong WK, Ho YF, Abd Malek SN. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn Mag. 2015;11(Suppl 2):S275.

    PubMed  PubMed Central  Google Scholar 

  164. Zhao X, Jiang K, Liang B, Huang X. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol Rep. 2016;35(2):669–75.

    Article  CAS  PubMed  Google Scholar 

  165. Kunnimalaiyaan S, Sokolowski KM, Balamurugan M, Gamblin TC, Kunnimalaiyaan M. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma. PLoS ONE. 2015;10(5):e0127464.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wang Y, Chen Y, Wang J, Chen J, Aggarwal B, Pang X, et al. Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr Mol Med. 2012;12(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  167. Venè R, Benelli R, Minghelli S, Astigiano S, Tosetti F, Ferrari N. Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Mol Med. 2012;18:1292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhang M, Lai J, Wu Q, Lai J, Su J, Zhu B, et al. Naringenin induces HepG2 cell apoptosis via ROS-mediated JAK-2/STAT-3 signaling pathways. Molecules. 2023;28(11):4506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zeng W, Jin L, Zhang F, Zhang C, Liang W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res. 2018;135:122–6.

    Article  CAS  PubMed  Google Scholar 

  170. Lin C, Zeng Z, Lin Y, Wang P, Cao D, Xie K, et al. Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota. Phytomedicine. 2022;106:154401.

    Article  CAS  PubMed  Google Scholar 

  171. Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, et al. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon. 2023;9(6):e17166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang L, Xu X, Jiang T, Wu K, Ding C, Liu Z, et al. Citrus aurantium naringenin prevents osteosarcoma progression and recurrence in the patients who underwent osteosarcoma surgery by improving antioxidant capability. Oxid Med Cell Longev. 2018;2018:8713263.

    PubMed  PubMed Central  Google Scholar 

  173. Xu Z, Jia Y, Liu J, Ren X, Yang X, Xia X, et al. Naringenin and quercetin exert contradictory cytoprotective and cytotoxic effects on tamoxifen-induced apoptosis in HepG2 cells. Nutrients. 2022;14(24):5394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–112.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal-curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci. 2021;22(13):7094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019;11(10):2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomed. 2017;12:6027–44.

    Article  CAS  Google Scholar 

  179. Shabgah AG, Zarifi SH, Kiapey SSM, Ezzatifar F, Pahlavani N, Soleimani D, et al. Curcumin and cancer; are long non-coding RNAs missing link? Prog Biophys Mol Biol. 2021;164:63–71.

    Article  Google Scholar 

  180. Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, et al. Curcumin and its derivatives in cancer therapy: potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res. 2022;36(1):189–213.

    Article  CAS  PubMed  Google Scholar 

  181. Boyanapalli SSS, Kong A-NT. “Curcumin, the King of Spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr Pharmacol Rep. 2015;1(2):129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shanmugam MK, Arfuso F, Sng JC, Bishayee A, Kumar AP, Sethi G. Chapter 5-Epigenetic effects of curcumin in cancer prevention. In: Bishayee A, Bhatia D, editors. Epigenetics of cancer prevention, vol. 8. London: Academic Press; 2019. p. 107–28.

    Chapter  Google Scholar 

  183. Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A, et al. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet. 2019;10:514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Amini A, Khadivar P, Ahmadnia A, Alipour M, Majeed M, Jamialahmadi T, et al. Role of curcumin in regulating long noncoding RNA expression in cancer. Adv Exp Med Biol. 2021;1308:13–23.

    Article  CAS  PubMed  Google Scholar 

  185. Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, et al. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother. 2021;141:111849.

    Article  CAS  PubMed  Google Scholar 

  186. Li X, Xie W, Xie C, Huang C, Zhu J, Zhaofeng L, et al. Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res. 2014;28:1553–60.

    Article  CAS  PubMed  Google Scholar 

  187. Chowdhury S, Ghosh J, Sil PC. Modulatory role of curcumin in miR-mediated regulation in cancer and non-cancer diseases. In: Patel V, Preedy V, editors. Handbook of nutrition, diet, and epigenetics. Cham: Springer; 2017. p. 1–18.

    Google Scholar 

  188. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a MicroRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol. 2016;171:1–38.

    Article  CAS  PubMed  Google Scholar 

  189. Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci. 2017;131(15):1781–99.

    Article  CAS  Google Scholar 

  190. Celik H, Aydin T, Solak K, Khalid S, Farooqi AA. Curcumin on the “flying carpets” to modulate different signal transduction cascades in cancers: next-generation approach to bridge translational gaps. J Cell Biochem. 2018;119(6):4293–303.

    Article  CAS  PubMed  Google Scholar 

  191. Paulraj F, Abas F, Lajis HN, Othman I, Naidu R. Molecular pathways modulated by curcumin analogue, diarylpentanoids in cancer. Biomolecules. 2019;9(7):270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Michala AS, Pritsa A. Quercetin: a molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases. 2022;10(3):37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tang S-M, Deng X-T, Zhou J, Li Q-P, Ge X-X, Miao L, et al. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121:109604.

    Article  CAS  PubMed  Google Scholar 

  196. Kedhari Sundaram M, Hussain A, Haque S, Raina R, Afroze N. Quercetin modifies 5’CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem. 2019;120(10):18357–69.

    Article  CAS  PubMed  Google Scholar 

  197. Mateus P, Wolf V, Borges M, Ximenes V. Quercetin: prooxidant effect and apoptosis in cancer. Studies in natural products chemistry. vol 58; 2018. p. 265–88.

  198. Galluzzo P, Martini C, Bulzomi P, Leone S, Bolli A, Pallottini V, et al. Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor alpha-dependent mechanisms. Mol Nutr Food Res. 2009;53(6):699–708.

    Article  CAS  PubMed  Google Scholar 

  199. Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, Pintzas A. Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis. 2007;28(5):1021–31.

    Article  CAS  PubMed  Google Scholar 

  200. Baruah MM, Khandwekar AP, Sharma N. Quercetin modulates Wnt signaling components in prostate cancer cell line by inhibiting cell viability, migration, and metastases. Tumour Biol. 2016;37(10):14025–34.

    Article  CAS  PubMed  Google Scholar 

  201. Farooqi A, Jabeen S, Attar R, Yaylim I, Xu B. Quercetin-mediated regulation of signal transduction cascades and microRNAs: natural weapon against cancer: FAROOQI et al. J Cell Biochem. 2018;119:9664–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KM is a recipient of junior research fellowship from Haryana State Council for Science, Innovation and Technology (HSCIT-3946). This agency had no role in the interpretation or writing the manuscript. AP is a recipient of junior research fellowship from The Indian Council of Medical Research (ICMR), Government of India (5/10/FR/03/2021-RBMCH). The Indian Council of Medical Research (ICMR), Government of India, is gratefully acknowledged by PKM for giving financial assistance (5/10/FR/03/2021-RBMCH).

Author information

Authors and Affiliations

Authors

Contributions

KM: Conceptualization, Writing—Original draft preparation; SY: Writing and Editing; AP: Writing and Editing; D: Writing and Editing; PKM: Supervision, Reviewing and Editing.

Corresponding author

Correspondence to Pawan Kumar Maurya.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Research Involving Human Participants

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moar, K., Yadav, S., Pant, A. et al. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01222-y

Keywords

Navigation