Skip to main content

Advertisement

Log in

Sesamin Inhibits Macrophage-Induced Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 Expression and Proangiogenic Activity in Breast Cancer Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sesamin is a sesame component with antihypertensive and antioxidative activities and has recently aroused much interest in studying its potential anticancer application. Macrophage is one of the infiltrating inflammatory cells in solid tumor and may promote tumor progression via enhancement of tumor angiogenesis. In this study, we investigated whether sesamin inhibited macrophage-enhanced proangiogenic activity of breast cancer cell lines MCF-7 and MDA-MB-231. Using vascular endothelial cell capillary tube and network formation assays, both breast cancer cell lines exhibited elevated proangiogenic activities after coculture with macrophages or pretreatment with macrophage-conditioned medium. This elevation of proangiogenic activity was drastically suppressed by sesamin. Vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) induced by macrophages in both cell lines were also inhibited by sesamin. Nuclear levels of HIF-1α and NF-κB, important transcription factors for VEGF and MMP-9 expression, respectively, were obviously reduced by sesamin. VEGF induction by macrophage in MCF-7 cells was shown to be via ERK, JNK, phosphatidylinositol 3-kinase, and NF-κB-mediated pathways. These signaling molecules and additional p38MAPK were also involved in macrophage-induced MMP-9 expression. Despite such diverse pathways were induced by macrophage, only Akt and p38MAPK activities were potently inhibited by sesamin. Expression of interleukin (IL)-6, IL-8, and tumor necrosis factor-α were substantially increased and involved in macrophage-induced VEGF and MMP-9 mRNA expression in MCF-7 cells. Sesamin effectively inhibited the expression of these cytokines to avoid the reinforced induction of VEGF and MMP-9. In conclusion, sesamin potently inhibited macrophage-enhanced proangiogenic activity of breast cancer cells via inhibition of VEGF and MMP-9 induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

TAM:

Tumor-associated macrophage

VEGF:

Vascular endothelial growth factor

FGF:

Fibroblast growth factor

IL:

Interleukin

TNF-α:

Tumor necrosis factor-α

TGF-β:

Transforming growth factor-β

MMP:

Matrix metalloproteinases

MϕCM:

Macrophage-conditioned medium

MCFCM:

MCF-7 cell-conditioned medium

MDACM:

MDA-MB-231 cell-conditioned medium

PI3-K:

Phosphatidylinositol 3-kinase

HUVECs:

Human umbilical vein endothelial cells

References

  1. Balkwill, F. 2004. Cancer and the chemokine network. Nature Reviews. Cancer 4: 540–550.

    Article  PubMed  CAS  Google Scholar 

  2. van Kempen, L.C., K.E. de Visser, and L.M. Coussens. 2006. Inflammation, proteases and cancer. European Journal of Cancer 42: 728–734.

    Article  PubMed  Google Scholar 

  3. Bingle, L., N.J. Brown, and C.E. Lewis. 2002. The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. The Journal of Pathology 196: 254–265.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, C.C., K.J. Liu, and T.S. Huang. 2006. Tumor-associated macrophage: Its role in tumor angiogenesis. Journal of Cancer Molecules 2: 135–140.

    CAS  Google Scholar 

  5. Lewis, C., and C. Murdoch. 2005. Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies. The American Journal of Pathology 167: 627–635.

    Article  PubMed  CAS  Google Scholar 

  6. Vicioso, L., F.J. Gonzalez, M. Alvarez, N. Ribelles, M. Molina, A. Marquez, L. Perez, A. Matilla, and E. Alba. 2006. Elevated serum levels of vascular endothelial growth factor are associated with tumor-associated macrophages in primary breast cancer. American Journal of Clinical Pathology 125: 111–118.

    PubMed  CAS  Google Scholar 

  7. Leek, R.D., and A.L. Harris. 2002. Tumor-associated macrophages in breast cancer. Journal of Mammary Gland Biology and Neoplasia 7: 177–189.

    Article  PubMed  Google Scholar 

  8. Lee, A.H., L.C. Happerfield, L.G. Bobrow, and R.R. Millis. 1997. Angiogenesis and inflammation in invasive carcinoma of the breast. Journal of Clinical Pathology 50: 669–673.

    Article  PubMed  CAS  Google Scholar 

  9. Goede, V., L. Brogelli, M. Ziche, and H.G. Augustin. 1999. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. International Journal of Cancer 82: 765–770.

    Article  CAS  Google Scholar 

  10. Sunderkotter, C., M. Goebeler, K. Schulze-Osthoff, R. Bhardwaj, and C. Sorg. 1991. Macrophage-derived angiogenesis factors. Pharmacology & Therapeutics 51: 195–216.

    Article  CAS  Google Scholar 

  11. Condeelis, J., and J.W. Pollard. 2006. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell 124: 263–266.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis, C.E., and J.W. Pollard. 2006. Distinct role of macrophages in different tumor microenvironments. Cancer Research 66: 605–612.

    Article  PubMed  CAS  Google Scholar 

  13. Pollard, J.W. 2004. Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer 4: 71–78.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, C.C., K.J. Liu, L.L. Chen, Y.C. Wu, and T.S. Huang. 2006. Tumor necrosis factor-α, interleukin-8 and interleukin-6 are involved in vascular endothelial cell capillary tube and network formation induced by tumor-associated macrophages. Journal of Cancer Molecules 2: 155–160.

    CAS  Google Scholar 

  15. Lee, C.C., P.R. Chen, S. Lin, S.C. Tsai, B.W. Wang, W.W. Chen, et al. 2004. Sesamin induces nitric oxide and decreases endothelin-1 production in HUVECs: Possible implications for its antihypertensive effect. Journal of Hypertension 22: 2329–2338.

    Article  PubMed  CAS  Google Scholar 

  16. Nakano, D., D. Kurumazuka, Y. Nagai, A. Nishiyama, Y. Kiso, and Y. Matsumura. 2008. Dietary sesamin suppresses aortic NADPH oxidase in DOCA salt hypertensive rats. Clinical and Experimental Pharmacology & Physiology 35: 324–326.

    Article  CAS  Google Scholar 

  17. Miyake, Y., S. Fukumoto, M. Okada, K. Sakaida, Y. Nakamura, and T. Osawa. 2005. Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. Journal of Agricultural and Food Chemistry 53: 22–27.

    Article  PubMed  CAS  Google Scholar 

  18. Nakano, D., C.J. Kwak, K. Fujii, K. Ikemura, A. Satake, M. Ohkita, et al. 2006. Sesamin metabolites induce an endothelial nitric oxide-dependent vasorelaxation through their antioxidative property-independent mechanisms: Possible involvement of the metabolites in the antihypertensive effect of sesamin. The Journal of Pharmacology and Experimental Therapeutics 318: 328–335.

    Article  PubMed  CAS  Google Scholar 

  19. Yokota, T., Y. Matsuzaki, M. Koyama, T. Hitomi, M. Kawanaka, M. Enoki-Konishi, et al. 2007. Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells. Cancer Science 98: 1447–1453.

    Article  PubMed  CAS  Google Scholar 

  20. Tsai, S.C., Y.C. Liu, C.P. Li, T.S. Huang, and C.C. Lee. 2006. Sesamin inhibits vascular endothelial cell growth and angiogenic activity of lung adenocarcinoma cells. Journal of Cancer Molecules 2: 199–205.

    CAS  Google Scholar 

  21. Cutolo, M., G. Carruba, B. Villaggio, D.A. Coviello, J.M. Dayer, I. Campisi, et al. 2001. Phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) up-regulates the expression of estrogen receptors in human THP-1 leukemia cells. Journal of Cellular Biochemistry 83: 390–400.

    Article  PubMed  CAS  Google Scholar 

  22. Hawinkels, L.J., K. Zuidwijk, H.W. Verspaget, E.S. de Jonge-Muller, W. van Duijn, V. Ferreira, et al. 2008. VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. European Journal of Cancer 44: 1904–1913.

    Article  PubMed  CAS  Google Scholar 

  23. Sica, A., T. Schioppa, A. Mantovani, and P. Allavena. 2006. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. European Journal of Cancer 42: 717–727.

    Article  PubMed  CAS  Google Scholar 

  24. Sica, A., P. Allavena, and A. Mantovani. 2008. Cancer related inflammation: The macrophage connection. Cancer Letters 267: 204–215.

    Article  PubMed  CAS  Google Scholar 

  25. Sica, A., L. Rubino, A. Mancino, P. Larghi, C. Porta, M. Rimoldi, et al. 2007. Targeting tumour-associated macrophages. Expert Opinion on Therapeutic Targets 11: 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  26. Toi, M., S. Hoshina, T. Takayanagi, and T. Tominaga. 1994. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Japanese Journal of Cancer Research 85: 1045–1049.

    PubMed  CAS  Google Scholar 

  27. Leek, R.D., R.J. Landers, A.L. Harris, and C.E. Lewis. 1999. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. British Journal of Cancer 79: 991–995.

    Article  PubMed  CAS  Google Scholar 

  28. Tsutsui, S., K. Yasuda, K. Suzuki, K. Tahara, H. Higashi, and S. Era. 2005. Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncology Reports 14: 425–431.

    PubMed  CAS  Google Scholar 

  29. Murdoch, C., A. Giannoudis, and C.E. Lewis. 2004. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104: 2224–2234.

    Article  PubMed  CAS  Google Scholar 

  30. Giraudo, E., M. Inoue, and D. Hanahan. 2004. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. The Journal of Clinical Investigation 114: 623–633.

    PubMed  CAS  Google Scholar 

  31. Wegiel, B., A. Bjartell, Z. Culig, and J.L. Persson. 2008. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. International Journal of Cancer 122: 1521–1529.

    Article  CAS  Google Scholar 

  32. Knall, C., G.S. Worthen, and G.L. Johnson. 1997. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proceedings of the National Academy of Sciences of the United States of America 94: 3052–3057.

    Article  PubMed  CAS  Google Scholar 

  33. Hanna, A.N., E.Y. Chan, J. Xu, J.C. Stone, and D.N. Brindley. 1999. A novel pathway for tumor necrosis factor-alpha and ceramide signaling involving sequential activation of tyrosine kinase, p21(ras), and phosphatidylinositol 3-kinase. The Journal of Biological Chemistry 274: 12722–12729.

    Article  PubMed  CAS  Google Scholar 

  34. Kazi, A.A., K.H. Molitoris, and R.D. Koos. 2009. Estrogen rapidly activates the PI3K/AKT pathway and hypoxia-inducible factor 1 and induces vascular endothelial growth factor A expression in luminal epithelial cells of the rat uterus. Biology of Reproduction 81: 378–387.

    Article  PubMed  CAS  Google Scholar 

  35. Ozes, O.N., L.D. Mayo, J.A. Gustin, S.R. Pfeffer, L.M. Pfeffer, and D.B. Donner. 1999. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82–85.

    Article  PubMed  CAS  Google Scholar 

  36. Srivastava, A.K., X. Qin, N. Wedhas, M. Arnush, T.A. Linkhart, R.B. Chad-wick, et al. 2007. Tumor necrosis factor-alpha augments matrix metalloproteinase-9 production in skeletal muscle cells through the activation of transforming growth factor-beta-activated kinase 1 (TAK1)-dependent signaling pathway. The Journal of Biological Chemistry 282: 35113–35124.

    Article  PubMed  CAS  Google Scholar 

  37. Martin, P., and S.J. Leibovich. 2005. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends in Cell Biology 15: 599–607.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants CA-097-PP-13 and CA-098-PP-10 from the National Health Research Institutes, the grant NSC96-2320-B-400-007 from the National Science Council, and the grants DOH97-TD-G-111-03 and DOH99-TD-C-111-004 from the Department of Health, Taiwan, Republic of China.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tze-Sing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CC., Liu, KJ., Wu, YC. et al. Sesamin Inhibits Macrophage-Induced Vascular Endothelial Growth Factor and Matrix Metalloproteinase-9 Expression and Proangiogenic Activity in Breast Cancer Cells. Inflammation 34, 209–221 (2011). https://doi.org/10.1007/s10753-010-9226-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-010-9226-z

KEY WORDS

Navigation