Skip to main content
Log in

Differential Expression of Circulating miR-221-3p, miR-146a-5p, miR-206 and Their Diagnostic Value in Lung Cancer

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Lung cancer is a major health problem and the second most common cancer in the Kashmiri population. It is often diagnosed at an advanced stage, leading to poor clinical outcomes. The aim of this study was to investigate the differential expression of serum microRNAs (miR-146a-5p, miR-206 and miR-221-3p) and their diagnostic value in lung cancer patients from Kashmir. Serum miRNAs were isolated using a Trizol-based protocol. A pooled reverse transcription protocol was used to convert miRNA to cDNA using miRNA-specific stem-loop primers. Serum miRNA expression was determined by RT-qPCR using Sybr green. miR-221-3p (1.89, p-value 0.001) and miR-146a-5p (1.445, p-value 0.006) were significantly upregulated in serum of lung cancer patients compared to non-lung cancer patients. However, miR-206 was downregulated in the serum of lung cancer (− 2.6, p-value 0.021). miR-221-3p showed the highest diagnostic significance due to its highest area under the curve (AUC) value (0.825, p-value 0.001). Our study identifies miR-221-3p as the most promising miRNA for the diagnosis of lung cancer in Kashmiri population. These findings contribute to the growing knowledge of lung cancer biomarkers and may facilitate early detection and improved clinical management in the Kashmiri population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  2. Singh N, Agrawal S, Jiwnani S, Khosla D, Malik PS, Mohan A, et al. Lung cancer in India. J Thorac Oncol. 2021;16(8):1250–66.

    Article  PubMed  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424.

    PubMed  Google Scholar 

  4. Mir MH, Siraj F, Mehfooz N, Sofi MA, Syed NA, Dar NA, et al. Clinicopathological profile of non-small cell lung cancer and the changing trends in its histopathology: experience from a tertiary care cancer center in Kashmir, India. Cureus. 2023;15:e34120.

    PubMed  PubMed Central  Google Scholar 

  5. Khan NA, Ahmad SN, Dar NA, Masoodi SR, Lone MM. Changing pattern of common cancers in the last five years in Kashmir, India: a retrospective observational study. Indian J Med Paediatr Oncol. 2021;42(05):439–43.

    Article  Google Scholar 

  6. Koul PA, Hajni MR, Sheikh MA, Khan UH, Shah A, Khan Y, et al. Hookah smoking and lung cancer in the Kashmir valley of the Indian subcontinent. Asian Pac J Cancer Prev. 2011;12(2):519–24.

    PubMed  Google Scholar 

  7. Gnagnarella P, Caini S, Maisonneuve P, Gandini S. Carcinogenicity of high consumption of meat and lung cancer risk among non-smokers: a comprehensive meta-analysis. Nutr Cancer. 2018;70(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  8. Cai H, Sobue T, Kitamura T, Ishihara J, Sawada N, Iwasaki M, et al. Association between meat and saturated fatty acid intake and lung cancer risk: the Japan Public Health Center-based prospective study. Int J Cancer. 2020;147(11):3019–28.

    Article  CAS  PubMed  Google Scholar 

  9. Mehta SS, Hodgson ME, Lunn RM, Ashley CE, Arroyave WD, Sandler DP, et al. Indoor wood-burning from stoves and fireplaces and incident lung cancer among Sister Study participants. Environ Int. 2023;178: 108128.

    Article  PubMed  Google Scholar 

  10. Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22(16):8661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9(2):276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fehlmann T, Kahraman M, Ludwig N, Backes C, Galata V, Keller V, et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol. 2020;6(5):714–23.

    Article  PubMed  Google Scholar 

  13. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu KL, Tsai YM, Lien CT, Kuo PL, Hung JY. The roles of MicroRNA in lung cancer. Int J Mol Sci. 2019;20(7):1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Roosbroeck K, Calin GA. Cancer hallmarks and microRNAs: the therapeutic connection. Adv Cancer Res. 2017;1(135):119–49.

    Article  Google Scholar 

  16. Solé C, Lawrie CH. MicroRNAs in metastasis and the tumour microenvironment. Int J Mol Sci. 2021;22(9):4859.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Li Y, Qi P, Ma Z. Biology of MiR-17-92 cluster and its progress in lung cancer. Int J Med Sci. 2018;15(13):1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene. 2007;26(41):6099–105.

    Article  CAS  PubMed  Google Scholar 

  19. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Can Res. 2005;65(21):9628–32.

    Article  CAS  Google Scholar 

  20. Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Mol Therapy-Nucleic Acids. 2022;27:1191–224.

    Article  Google Scholar 

  21. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2003;12(9):735–9.

    Article  Google Scholar 

  22. Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26(3):775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.

    Article  CAS  PubMed  Google Scholar 

  24. Duy J, Koehler JW, Honko AN, Minogue TD. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics. 2015;16:1–9.

    Article  CAS  Google Scholar 

  25. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005;33(20):e179.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 2011;95(1):15.

    Article  Google Scholar 

  27. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3(1):1–2.

    Article  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  29. Shi L, Xu Z, Wu G, Chen X, Huang Y, Wang Y, et al. up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin. J BMC Cancer. 2017;17(1):1–4.

    Google Scholar 

  30. Iacona JR, Monteleone NJ, Lutz CS. miR-146a suppresses 5-lipoxygenase activating protein (FLAP) expression and Leukotriene B4 production in lung cancer cells. Oncotarget. 2018;9(42):26751.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang RJ, Zheng YH, Wang P, Zhang JZ. Serum miR-125a-5p, miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(1):765.

    PubMed  PubMed Central  Google Scholar 

  32. Liu X, Liu B, Li R, Wang F, Wang N, Zhang M, et al. miR-146a-5p plays an oncogenic role in NSCLC via suppression of TRAF6. Front Cell Dev Biol. 2020;2(8):847.

    Article  Google Scholar 

  33. Wu Q, Yu L, Lin X, Zheng Q, Zhang S, Chen D, et al. Combination of serum miRNAs with serum exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag Res. 2020;21:485–95.

    Article  Google Scholar 

  34. Chen QY, Jiao DM, Wang J, Hu H, Tang X, Chen J, et al. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget. 2016;7(17):24510.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liao M, Peng L. MiR-206 may suppress non-small lung cancer metastasis by targeting CORO1C. Cell Mol Biol Lett. 2020;25(1):1–3.

    Article  Google Scholar 

  36. Zhang YJ, Xu F, Zhang YJ, Li HB, Han JC, Li L. miR-206 inhibits non small cell lung cancer cell proliferation and invasion by targeting SOX9. Int J Clin Exp Med. 2015;8(6):9107.

    PubMed  PubMed Central  Google Scholar 

  37. Xue D, Yang Y, Liu Y, Wang P, Dai Y, Liu Q, et al. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3ζ/STAT3/HIF-1α/VEGF signaling. Oncotarget. 2016;7(48):79805.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun YJ, Li J, Chen CH. Effects of miR-221 on the apoptosis of non-small cell lung cancer cells by lncRNA HOTAIR. Eur Rev Med Pharmacol Sci. 2019;23(10):4226.

    PubMed  Google Scholar 

  39. Yin G, Zhang B, Li J. miR-221-3p promotes the cell growth of non-small cell lung cancer by targeting p27. Mol Med Rep. 2019;20(1):604–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo Y, Wang G, Wang Z, Ding X, Qian L, Li Y, et al. Reck-Notch1 signaling mediates miR-221/222 regulation of lung cancer stem cells in NSCLC. Front Cell Dev Biol. 2021;9: 663279.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhu Z, Zhang D, Lee H, Menon AA, Wu J, Hu K, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leucoc Biol. 2017;101(6):1349–59.

    Article  CAS  Google Scholar 

  42. Yamashita R, Sato M, Kakumu T, Hase T, Yogo N, Maruyama E, et al. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells. Cancer Med. 2015;4(4):551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57(6):833–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Multidisciplinary Research Unit (MRU), Government Medical College (GMC), Srinagar, J&K, India under the project number [PR005/LRAC-1/2019].

Author information

Authors and Affiliations

Authors

Contributions

SM and JAW designed the study; JAW conducted the research, wrote the paper, and performed the statistical analysis. HS assisted in bench work and proof reading; AAW and MYR assisted in proof reading; MYR, and SM reviewed the manuscript for important intellectual content; and JAW and SM have primary responsibility for the final content. There are no conflicts of interest in this piece of writing.

Corresponding author

Correspondence to Sabhiya Majid.

Ethics declarations

Conflict of interest

No conflicts of interests declared.

Ethical Approval

The study was approved by the ethical committee government medical college Srinagar under the reference number 156/ETH/GMC/ICM.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, J.A., Majid, S., Shah, N.N. et al. Differential Expression of Circulating miR-221-3p, miR-146a-5p, miR-206 and Their Diagnostic Value in Lung Cancer. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01214-y

Keywords

Navigation