Skip to main content

Advertisement

Log in

Differential expression of circulating serum miR-1249-3p, miR-3195, and miR-3692-3p in non-small cell lung cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Global deregulation in miRNA expression is a hallmark of cancer cell. An estimated 2300 mature miRNAs are encoded by human genome; role of many of which in carcinogenesis and as cancer biomarkers remains unexplored. In this study, we investigated the utility of miR-3692-3p, miR-3195, and miR-1249-3p as biomarkers in non-small cell lung cancer (NSCLC). For this prospective study, 115 subjects, including 75 NSCLC patients and 40 controls, were recruited. The expression of miR-3692-3p, miR-3195, and miR-1249-3p was checked using qRT-PCR. The miRNA expression was correlated with survival outcome and therapeutic response. There were no significant differences in the mean age of NSCLC patients and controls (56.2 and 55.3 years, respectively; p = 0.3242). Majority of NSCLC patients (67%) were smokers. We observed a significant upregulation of miR-3692-3p expression (p < 0.0001), while the expression of miR-3195 (p = 0.0017) and miR-1249-3p was significantly downregulated (p < 0.0001) in the serum of NSCLC patients as compared to controls. The expression of miR-1249-3p was significantly upregulated in lung adenocarcinoma versus lung squamous cell carcinoma (p = 0.0178). Interestingly, patients who responded to chemotherapy had higher expression of miR-1249-3p than non-responders (p = 0.0107). Moreover, patients with higher expression of miR-3195 had significantly longer overall survival (p = 0.0298). In multivariate analysis, miR-3195 emerged as independent prognostic factor for overall survival. We conclude that the miR-3195 may have prognostic significance, while miR-1249-3p may predict therapeutic response in NSCLC. Further studies are warranted to elucidate the role of these miRNAs in lung carcinogenesis and their utility as candidate cancer biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

LUSC:

Lung squamous cell carcinoma

LUAD:

Lung adenocarcinoma

miRNA:

MicroRNA

RT:

Room temperature

qRT-PCR:

Reverse transcription quantitative polymerase chain reaction

OS:

Overall survival

PFS:

Progression-free survival

ROC:

Receiver operating characteristic

AUC:

Area under the curve

ECOG PS:

Eastern Cooperative Oncology Group performance status

BC:

Breast cancer

HCC:

Hepatocellular cancer

PC:

Prostate cancer

GC:

Gastric cancer

BCR:

Biochemical recurrence

ICOS:

Inducible T-cell co-stimulator

UTR:

Untranslated region

CRC:

Colorectal cancer

HBV:

Hepatitis virus B

SP:

Side population

HOXB8:

Homeobox 8

VEGFA:

Vascular endothelial growth factor A

HMGA2:

High-mobility group AT-hook 2

APC2:

Adenomatous polyposis coli 2

Gli1:

Glioma-associated oncogene 1

PTCH-1:

Patched-1

References

  1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin. 2011;61:91–112. https://doi.org/10.3322/caac.20102.

    Article  PubMed  Google Scholar 

  3. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12:175–80. https://doi.org/10.1016/S1470-2045(10)70087-5.

    Article  CAS  PubMed  Google Scholar 

  4. Korpanty GJ, Graham DM, Vincent MD, et al. Biomarkers that currently affect clinical practices in lung cancer: EGFR, ALK, MET, ROS-1, and KRAS. Front Oncol. 2014;4:204. https://doi.org/10.3389/fonc.2014.00204.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brahmer JR, Govindan R, Anders RA, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer. 2018;6(1):75. https://doi.org/10.1186/s40425-018-0382-2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  7. Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11:849–64. https://doi.org/10.1038/nrc3166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh DK, Bose S, Kumar S. Role of microRNA in regulating cell signaling pathways, cell cycle, and apoptosis in non-small cell lung cancer. Curr Mol Med. 2016;16:474–86. https://doi.org/10.2174/1566524016666160429120702.

    Article  CAS  Google Scholar 

  9. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143–59. https://doi.org/10.1002/emmm.201100209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rupaimoole R, Calin GA, Lopez-Berestein G, et al. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6:235–46. https://doi.org/10.1158/2159-8290.CD-15-0893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He Y, Lin J, Kong D, et al. Current state of circulating microRNAs as cancer biomarkers. Clin Chem. 2015;61:1138–55. https://doi.org/10.1373/clinchem.2015.241190.

    Article  CAS  PubMed  Google Scholar 

  12. Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–64. https://doi.org/10.1093/nar/gkz097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar S, Sharawat SK, Ali A, et al. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non-small cell lung cancer patients. Curr Probl Cancer. 2020. https://doi.org/10.1016/j.currproblcancer.2020.100540.

    Article  PubMed  Google Scholar 

  14. Detterbeck FC, Boffa DJ, Kim AW, et al. The eighth edition lung cancer stage classification. Chest. 2017;151:193–203. https://doi.org/10.1016/j.chest.2016.10.010.

    Article  PubMed  Google Scholar 

  15. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  16. Gao P, Teng Z, Ji L, et al. Interactions of ABLIMI and CXCL5 with miRNAs as a prognostic indicator for clinical outcome of osteosarcoma. Int J Clin Exp Med. 2016;9(8):15345–53.

    CAS  Google Scholar 

  17. He Z, Yi J, Liu X, et al. MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial-mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma. Mol Cancer. 2016;15(1):51. https://doi.org/10.1186/s12943-016-0533-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim BG, Kang S, Han HH, et al. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets. Oncotarget. 2016;7(19):27468–78. https://doi.org/10.18632/oncotarget.8322.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stückrath I, Rack B, Janni W, et al. Aberrant plasma levels of circulating miR-16, miR-107, miR-130a and miR-146a are associated with lymph node metastasis and receptor status of breast cancer patients. Oncotarget. 2015;6(15):13387–40101. https://doi.org/10.18632/oncotarget.3874.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yasui T, Yanagida T, Ito S, et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv. 2017;3(12):e1701133. https://doi.org/10.1126/sciadv.1701133.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu S, Pan H, Cao J, et al. MicroRNA-134 inhibits HCC cell growth and migration through the AKT/GSK3β/SNAIL signaling pathway. Int J Clin Exp Pathol. 2016;9(7):6877–86.

    CAS  Google Scholar 

  22. Stuopelytė K, Daniūnaitė K, Jankevičius F, et al. Detection of miRNAs in urine of prostate cancer patients. Medicina (Kaunas). 2016;52(2):116–24. https://doi.org/10.1016/j.medici.2016.02.007.

    Article  Google Scholar 

  23. Wu D, Tang R, Qi Q, et al. Five functional polymorphisms of B7/CD28 co-signaling molecules alter susceptibility to colorectal cancer. Cell Immunol. 2015;293(1):41–8. https://doi.org/10.1016/j.cellimm.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  24. Marinelli O, Nabissi M, Morelli MB, et al. ICOS-L as a potential therapeutic target for cancer immunotherapy. Curr Protein Pept Sci. 2018;19(11):1107–13. https://doi.org/10.2174/1389203719666180608093913.

    Article  CAS  PubMed  Google Scholar 

  25. Soldevilla MM, Villanueva H, Meraviglia-Crivelli D, et al. ICOS costimulation at the tumor site in combination with CTLA-4 blockade therapy elicits strong tumor immunity. Mol Ther. 2019;27(11):1878–91. https://doi.org/10.1016/j.ymthe.2019.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan HL, Wen ZS, Huang YC, et al. Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep. 2015;5:14331. https://doi.org/10.1038/srep14331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang L, Cai JL, Huang PZ, et al. miR19b-3p promotes the growth and metastasis of colorectal cancer via directly targeting ITGB8. Am J Cancer Res. 2017;7(10):1996–2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider A, Victoria B, Lopez YN, et al. Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Sci Rep. 2018;8(1):675. https://doi.org/10.1038/s41598-017-18945-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morishita A, Iwama H, Fujihara S, et al. MicroRNA profiles in various hepatocellular carcinoma cell lines. Oncol Lett. 2016;12(3):1687–92. https://doi.org/10.3892/ol.2016.4853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hide T, Komohara Y, Miyasato Y, et al. Oligodendrocyte progenitor cells and macrophages/microglia produce glioma stem cell niches at the tumor border. EBioMedicine. 2018;30:94–104. https://doi.org/10.1016/j.ebiom.2018.02.024.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sohn EJ, Won G, Lee J, et al. Upregulation of miRNA3195 and miRNA374b mediates the anti-angiogenic properties of melatonin in hypoxic PC-3 prostate cancer cells. J Cancer. 2015;6:19–28. https://doi.org/10.7150/jca.9591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu C, Huang Q, Zhu H. Melatonin inhibits the proliferation of gastric cancer cells through regulating the miR-16-5p-Smad3 pathway. DNA Cell Biol. 2018;37(3):244–52. https://doi.org/10.1089/dna.2017.4040.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang J, Ma B, Li X, et al. MiR-1281, a p53-responsive microRNA, impairs the survival of human osteosarcoma cells upon ER stress via targeting USP39. Am J Cancer Res. 2018;8(9):1764–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Ma L, Wang Z, et al. MicroRNA expression profile of gastric cancer stem cells in the MKN-45 cancer cell line. Acta Biochim Biophys Sin (Shanghai). 2014;46(2):92–9. https://doi.org/10.1093/abbs/gmt135.

    Article  CAS  Google Scholar 

  35. Chen Y, Zhao J, Luo Y, et al. Downregulated expression of miRNA-149 promotes apoptosis in side population cells sorted from the TSU prostate cancer cell line. Oncol Rep. 2016;36(5):2587–600. https://doi.org/10.3892/or.2016.5047.

    Article  CAS  PubMed  Google Scholar 

  36. Qin X, Yu S, Xu X, et al. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes. Oncotarget. 2017;8(26):42125–35. https://doi.org/10.18632/oncotarget.15009.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wozniak M, Sztiller-Sikorska M, Czyz M. Expression of miRNAs as important element of melanoma cell plasticity in response to microenvironmental stimuli. Anticancer Res. 2015;35(5):2747–58.

    CAS  PubMed  Google Scholar 

  38. Ghosh T, Varshney A, Kumar P, et al. MicroRNA-874-mediated inhibition of the major G1/S phase cyclin, CCNE1, is lost in osteosarcomas. J Biol Chem. 2017;292(52):21264–81. https://doi.org/10.1074/jbc.M117.808287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dankert JT, Wiesehöfer M, Czyrnik ED, et al. The deregulation of miR-17/CCND1 axis during neuroendocrine transdifferentiation of LNCaP prostate cancer cells. PLoS ONE. 2018;13(7):e0200472. https://doi.org/10.1371/journal.pone.0200472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding J, Wu W, Yang J, et al. Long non-coding RNA MIF-AS1 promotes breast cancer cell proliferation, migration and EMT process through regulating miR-1249-3p/HOXB8 axis. Pathol Res Pract. 2019;215(7):152376. https://doi.org/10.1016/j.prp.2019.03.005.

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, Zeng K, Xu M, et al. P53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2. Cell Death Dis. 2019;10(2):131. https://doi.org/10.1038/s41419-018-1188-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katayama Y, Maeda M, Miyaguchi K, et al. Identification of pathogenesis-related microRNAs in hepatocellular carcinoma by expression profiling. Oncol Lett. 2012;4(4):817–23. https://doi.org/10.3892/ol.2012.810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fang B, Li G, Xu C, et al. MicroRNA miR-1249 downregulates adenomatous polyposis coli 2 expression and promotes glioma cells proliferation. Am J Transl Res. 2018;10(5):1324–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shu H, Hu J, Deng H. miR-1249-3p accelerates the malignancy phenotype of hepatocellular carcinoma by directly targeting HNRNPK. Mol Genet Genom Med. 2019;7(10):e00867. https://doi.org/10.1002/mgg3.867.

    Article  Google Scholar 

  45. Seshachalam VP, Sekar K, Hui KM. Insights into the etiology-associated gene regulatory networks in hepatocellular carcinoma from The Cancer Genome Atlas. J Gastroenterol Hepatol. 2018;33(12):2037–47. https://doi.org/10.1111/jgh.14262.

    Article  CAS  PubMed  Google Scholar 

  46. Ye Y, Wei Y, Xu Y, et al. Induced MiR-1249 expression by aberrant activation of Hedegehog signaling pathway in hepatocellular carcinoma. Exp Cell Res. 2017;355(1):9–17. https://doi.org/10.1016/j.yexcr.2017.03.010.

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Xiong W, Li H. Comparison of microRNA expression profiles in K562-cells-derived microvesicles and parental cells, and analysis of their roles in leukemia. Oncol Lett. 2016;12(6):4937–48. https://doi.org/10.3892/ol.2016.5308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoshii S, Hayashi Y, Iijima H, et al. Exosomal microRNAs derived from colon cancer cells promote tumor progression by suppressing fibroblast TP53 expression. Cancer Sci. 2019;110(8):2396–407. https://doi.org/10.1111/cas.14084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okumura T, Shimada Y, Omura T, et al. MicroRNA profiles to predict postoperative prognosis in patients with small cell carcinoma of the esophagus. Anticancer Res. 2015;35(2):719–27.

    CAS  PubMed  Google Scholar 

  50. Scaravilli M, Porkka KP, Brofeldt A, et al. MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2. Prostate. 2015;75(8):798–805. https://doi.org/10.1002/pros.22961.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Science and Engineering Research Board (SERB), Govt. of India, New Delhi (Grant no. SB/YS/LS-348/2013) and All India Institute of Medical Sciences, New Delhi (Grant no. A-516).

Funding

The authors gratefully acknowledge the financial support from the Science & Engineering Research Board (SERB), Govt. of India, New Delhi (Grant no. SB/YS/LS-348/2013) and All India Institute of Medical Sciences, New Delhi (Grant no. A-516).

Author information

Authors and Affiliations

Authors

Contributions

SK, VG, and MP performed all the laboratory work. SK and SKS analyzed and interpreted the experimental data. AS, PSM, SK, AM and RG collected, analyzed, and interpreted the clinical data. SK designed the study and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by ethics committee of All India Institute of Medical Sciences, New Delhi (Ref. No. IEC-155/07.04.2017, RP-13/2017). This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sharawat, S.K., Ali, A. et al. Differential expression of circulating serum miR-1249-3p, miR-3195, and miR-3692-3p in non-small cell lung cancer. Human Cell 33, 839–849 (2020). https://doi.org/10.1007/s13577-020-00351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00351-9

Keywords

Navigation