Skip to main content

Advertisement

Log in

Genetic Variant Arg399Gln G>A of XRCC1 DNA Repair Gene Enhanced Cancer Risk Among Indian Population: Evidence from Meta-analysis and Trial Sequence Analyses

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The X-ray repair cross-complementation group 1 (XRCC1) gene plays an important role in base excision repair pathway. Several studies have reported contradictory results for XRCC1 exon 10 (Arg399Gln, G23990A, rs25487) gene polymorphism and cancer risk in Indian population, making it difficult to interpret them. Therefore, we have conducted a meta-analysis to evaluate the more precise association between XRCC1 exon 10 G>A gene polymorphism and risk of cancer by published studies. We searched PubMed (Medline) and Google scholar web databases to cover all studies published on association between XRCC1 exon 10 G>A gene polymorphism and cancer risk until August 2016. Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to appraise the strength of association. Heterogeneity, publication bias and sensitivity analysis were also assessed. Twenty-five published studies had fulfilled the inclusion criteria comprising 4131 confirmed cancer cases and 5013 controls. When all studies were polled together, overall significant association was found between XRCC1 exon 10 G>A polymorphism and cancer risk in variant allele carrier (A vs. G: OR 1.217, 95% CI 1.056–1.402, p = 0.007), homozygous (AA vs. GG: OR 1.359, 95% CI 1.036–1.783, p = 0.027), dominant (AA+AG vs. GG OR 1.208, 95% CI 1.006–1.450, p = 0.043) and recessive (AA vs. AG+GG: OR 1.315, 95% CI 1.029–1.680, p = 0.029) genetic models. Further sensitivity analysis supported the stability of our result by showing similar ORs before and after removal of a single study. The present meta-analysis suggested that the XRCC1 exon 10 G>A polymorphism contribute cancer risk in Indian population, and supports that individuals with risk allele A and AA genotype are at higher risk of developing cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  2. Takiar R, Nadayil D, Nandakumar A. Projections of number of cancer cases in India (2010–2020) by cancer groups. Asian Pac J Cancer Prev. 2010;11:1045–9.

    PubMed  Google Scholar 

  3. Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer susceptibility genetic variants. Nat Rev Cancer. 2004;4:850–60.

    Article  PubMed  CAS  Google Scholar 

  4. Chung CC, Magalhaes WC, Gonzalez-Bosquet J, Chanock SJ. Genome-wide association studies in cancer–current and future directions. Carcinogenesis. 2010;31:111–20.

    Article  PubMed  CAS  Google Scholar 

  5. Friedberg EC. DNA damage and repair. Nature. 2003;421:436–40.

    Article  PubMed  CAS  Google Scholar 

  6. Ishikawa T, Ide F, Qin X, Zhang S, Takahashi Y, Sekiguchi M. Importance of DNA repair in carcinogenesis: evidence from transgenic and gene targeting studies. Mutat Res. 2001;477:41–9.

    Article  PubMed  CAS  Google Scholar 

  7. Marsin S, Vidal AE, Sossou M, Ménissier-de Murcia J, Le Page F, Boiteux S. Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1. J Biol Chem. 2003;278:44068–74.

    Article  PubMed  CAS  Google Scholar 

  8. Caldecott KW, Aoufouchi S, Johnson P, Shall S. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro. Nucleic Acids Res. 1996;24:4387–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Duell EJ, Wiencke JK, Cheng TJ, Varkonyi A, Zuo ZF, Ashok TD. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 2000;21:965–71.

    Article  PubMed  CAS  Google Scholar 

  10. Ghosh S, Ghosh S, Bankura B. Association of DNA repair and xenobiotic pathway gene polymorphisms with genetic susceptibility to gastric cancer patients in West Bengal, India. Tumour Biol. 2016;37:9139–49.

    Article  PubMed  CAS  Google Scholar 

  11. Bajpai D, Banerjee A, Pathak S, Thakur B, Jain SK, Singh N. Single nucleotide polymorphisms in the DNA repair genes in HPV-positive cervical cancer. Eur J Cancer Prev. 2016;25:224–31.

    Article  PubMed  CAS  Google Scholar 

  12. Saikia BJ, Phukan RK, Sharma SK, Sekhon GS, Mahanta J. Interaction of XRCC1 and XPD gene polymorphisms with lifestyle and environmental factors regarding susceptibility to lung cancer in a high incidence population in North East India. Asian Pac J Cancer Prev. 2014;15:1993–9.

    Article  PubMed  Google Scholar 

  13. Choudhury JH, Choudhury B, Kundu S, Ghosh SK. Combined effect of tobacco and DNA repair genes polymorphisms of XRCC1 and XRCC2 influence high risk of head and neck squamous cell carcinoma in northeast Indian population. Med Oncol. 2014;31:67.

    Article  PubMed  CAS  Google Scholar 

  14. Uppal V, Mehndiratta M, Mohapatra D, Grover RK, Puri D. XRCC-1 Gene Polymorphism (Arg399Gln) and Susceptibility to Development of Lung Cancer in Cohort of North Indian Population: A Pilot Study. J Clin Diagn Res. 2014;8:CC17–20.

    PubMed  PubMed Central  Google Scholar 

  15. Natukula K, Jamil K, Pingali UR, Attili VS, Madireddy UR. The codon 399 Arg/Gln XRCC1 polymorphism is associated with lung cancer in Indians. Asian Pac J Cancer Prev. 2003;14:5275–9.

    Article  Google Scholar 

  16. Devi MS, Balachandar V, Arun M. Analysis of genetic damage and gene polymorphism in hepatocellular carcinoma (HCC) patients in a South Indian population. Dig Dis Sci. 2013;58:759–67.

    Article  CAS  Google Scholar 

  17. Bose S, Tripathi DM. Sukriti. Genetic polymorphisms of CYP2E1 and DNA repair genes HOGG1 and XRCC1: association with hepatitis B related advanced liver disease and cancer. Gene. 2013;519:231–7.

    Article  PubMed  CAS  Google Scholar 

  18. Annamaneni S, Gorre M, Kagita S. Association of XRCC1 gene polymorphisms with chronic myeloid leukemia in the population of Andhra Pradesh. India Hematol. 2013;18:163–8.

    Article  CAS  Google Scholar 

  19. Khan NP, Pandith AA, Yousuf A. The XRCC1 Arg399Gln gene polymorphism and risk of colorectal cancer: a study in Kashmir. Asian Pac J Cancer Prev. 2013;14:6779–82.

    Article  PubMed  Google Scholar 

  20. Nissar S, Lone TA, Banday MZ. Arg399Gln polymorphism of XRCC1 gene and risk of colorectal cancer in Kashmir: a case control study. Oncol Lett. 2013;5:959–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Berhane N, Sobti RC, Mahdi SA. DNA repair genes polymorphism (XPG and XRCC1) and association of prostate cancer in a north Indian population. Mol Biol Rep. 2012;39:2471–9.

    Article  PubMed  CAS  Google Scholar 

  22. Kumar A, Pant MC, Singh HS, Khandelwal S. Associated risk of XRCC1 and XPD cross talk and life style factors in progression of head and neck cancer in north Indian population. Mutat Res. 2012;729:24–34.

    Article  PubMed  CAS  Google Scholar 

  23. Mittal RD, Mandal RK, Gangwar R. Base excision repair pathway genes polymorphism in prostate and bladder cancer risk in North Indian population. Mech Ageing Dev. 2012;133:127–32.

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Zhao Y, Jiang J. Polymorphisms in DNA repair genes XRCC1, XRCC3 and XPD, and colorectal cancer risk: a case-control study in an Indian population. J Cancer Res Clin Oncol. 2010;136:1517–25.

    Article  PubMed  CAS  Google Scholar 

  25. Srivastava A, Srivastava K, Pandey SN, Choudhuri G, Mittal B. Single-nucleotide polymorphisms of DNA repair genes OGG1 and XRCC1: association with gallbladder cancer in North Indian population. Ann Surg Oncol. 2009;16:1695–703.

    Article  PubMed  Google Scholar 

  26. Syamala VS, Syamala V, Sreedharan H, Raveendran PB, Kuttan R, Ankathil R. Contribution of XPD (Lys751Gln) and XRCC1 (Arg399Gln) polymorphisms in familial and sporadic breast cancer predisposition and survival: an Indian report. Pathol Oncol Res. 2009;15:389–97.

    Article  PubMed  CAS  Google Scholar 

  27. Kiran M, Saxena R, Chawla YK, Kaur J. Polymorphism of DNA repair gene XRCC1 and hepatitis-related hepatocellular carcinoma risk in Indian population. Mol Cell Biochem. 2009;327:7–13.

    Article  PubMed  CAS  Google Scholar 

  28. Mitra AK, Singh N, Singh A. Association of polymorphisms in base excision repair genes with the risk of breast cancer: a case-control study in North Indian women. Oncol Res. 2008;17:127–35.

    Article  PubMed  Google Scholar 

  29. Sreeja L, Syamala VS, Syamala V. Prognostic importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India. J Cancer Res Clin Oncol. 2008;134:645–52.

    Article  PubMed  CAS  Google Scholar 

  30. Sobti RC, Singh J, Kaur P. XRCC1 codon 399 and ERCC2 codon 751 polymorphism, smoking, and drinking and risk of esophageal squamous cell carcinoma in a North Indian population. Cancer Genet Cytogenet. 2007;175:91–7.

    Article  PubMed  CAS  Google Scholar 

  31. Pachouri SS, Sobti RC, Kaur P, Singh J. Contrasting impact of DNA repair gene XRCC1 polymorphisms Arg399Gln and Arg194Trp on the risk of lung cancer in the north-Indian population. DNA Cell Biol. 2007;26:186–91.

    Article  PubMed  Google Scholar 

  32. Ramachandran S, Ramadas K, Hariharan R. Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer. Oral Oncol. 2006;42:350–62.

    Article  PubMed  CAS  Google Scholar 

  33. Joseph T, Kusumakumary P, Chacko P, Abraham A, Pillai MR. DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett. 2005;217:17–24.

    Article  PubMed  CAS  Google Scholar 

  34. Chacko P, Rajan B, Joseph T, Mathew BS, Pillai MR. Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to breast cancer. Breast Cancer Res Treat. 2005;89:15–21.

    Article  PubMed  CAS  Google Scholar 

  35. Wu R, Li B. A multiplicative-epistatic model for analyzing interspecific differences in outcrossing species. Biometrics. 2009;55:355–65.

    Google Scholar 

  36. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    PubMed  CAS  Google Scholar 

  37. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–8.

    Article  PubMed  CAS  Google Scholar 

  38. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wetterslev J, Thorlund K, Brok J. Trial sequential analysis may establish when firm evidence is reached in cumulative metaanalysis. J Clin Epidemiol. 2008;61:64–75.

    Article  PubMed  Google Scholar 

  40. Turner RM, Bird SM, Higgins JP. The impact of study size on metaanalyses: examination of underpowered studies in Cochrane reviews. PLoS ONE. 2013;8:e59202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brok J, Thorlund K, Wetterslev J. Apparently conclusive metaanalyses may be inconclusive—Trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal meta-analyses. Int J Epidemiol. 2009;38:287–8.

    Article  PubMed  Google Scholar 

  42. Khoury MJ, Yang Q. The future of genetic studies of complex human diseases: an epidemiologic perspective. Epidemiology. 1998;9:350–4.

    Article  PubMed  CAS  Google Scholar 

  43. Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH. Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol. 1999;208:513–29.

    Article  PubMed  CAS  Google Scholar 

  44. Whitehouse CJ, Taylor RM, Thistlethwaite A. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 2001;104:107–17.

    Article  PubMed  CAS  Google Scholar 

  45. Munafò MR, Flint J. Meta-analysis of genetic association studies. Trends Genet. 2004;20:439–44.

    Article  PubMed  CAS  Google Scholar 

  46. Li Y, Marion MJ, Rundle A, Brandt-Rauf PW. A common polymorphism in XRCC1 as a biomarker of susceptibility for chemically induced genetic damage. Biomarkers. 2003;8:408–14.

    Article  PubMed  CAS  Google Scholar 

  47. Brem R, Hall J. XRCC1 is required for DNA single-strand break repair in human cells. Nucleic Acids Res. 2005;33:2512–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Indian Genome Variation Consortium. Genetic landscape of the people of India: a canvas for disease gene exploration. J Genet. 2008;87:3–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama D. Mittal.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, R.K., Mittal, R.D. Genetic Variant Arg399Gln G>A of XRCC1 DNA Repair Gene Enhanced Cancer Risk Among Indian Population: Evidence from Meta-analysis and Trial Sequence Analyses. Ind J Clin Biochem 33, 262–272 (2018). https://doi.org/10.1007/s12291-017-0669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-017-0669-y

Keywords

Navigation