Skip to main content
Log in

Assessment of Oxidative Stress Markers and Carotid Artery Intima-Media Thickness in Elderly Patients Without and with Coronary Artery Disease

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

We aimed to assess whether measuring carotid intima-media thickness (CIMT) and oxidative stress markers such as protein carbonyls, malondialdehyde, nitrate and glutathione in plasma of elderly patients without and with coronary artery disease (CAD) identifies early risk for CAD. A total of 50 cases with cardiovascular risk factors over the age of 60 years without CAD, and 50 patients with angiographically documented CAD over the age of 60 years were included in the study. Control group consists of 200 healthy individuals without the risk factors. Demographic details were obtained from all the subjects and CIMT measured by high frequency ultrasound and oxidative stress markers such protein carbonyls, malondialdehyde and total glutathione were determined in plasma by spectrophotometric methods. The distribution of cardiovascular risk factors in without CAD and CAD cases were smokers (16 vs 56 %), hypertension (26 vs 64 %), diabetes (16 vs 56 %) and dyslipidemia (18 vs 58 %) and positive family history (4 vs 38 %). None of the control group had any cardiovascular risk factors. Among the CAD cases, 16 % had single vessel disease, 44 % had double vessel disease and 40 % had triple vessel disease. The CIMT was significantly increased in CAD cases as compared to cases without CAD and healthy controls. On the other hand, CIMT was significantly increased in cases without CAD as compared to healthy controls. CIMT also increased with the duration of diabetes in patients without CAD and severity of disease in CAD cases. The levels of oxidants like plasma malondialdehyde, protein carbonyls, were significantly elevated and antioxidant glutathione levels and nitrate levels were significantly reduced in cases with and without CAD as compared to healthy controls. Oxidative stress markers and CIMT was found to be significantly increased in patients with cardiovascular risk factors like diabetes, family history of CAD, dyslipidemia, hypertension and smoking when compared to patients without risk factors. In patients with diabetes, CIMT increased as duration of disease increases and also in poorly controlled diabetes. In CAD group, when number of vessel involvement (severity of coronary disease) increases, the CIMT also increases confirming that CIMT is a quantifiable risk factor for CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sharma M, Ganguly NK. Premature coronary artery disease in Indians and its associated risk factors. Vasc Health Risk Manag. 2005;1:217–25.

    PubMed  PubMed Central  Google Scholar 

  2. Haskell WL. Cardiovascular disease prevention and lifestyle interventions: effectiveness and efficacy. J Cardiovasc Nurs. 2003;18(4):245–55.

    Article  PubMed  Google Scholar 

  3. Johnson PA, Manson JE. Cardiology patient page. How to make sure the beat goes on: protecting a woman’s heart. Circulation. 2005;111(4):e28–33.

    Article  PubMed  Google Scholar 

  4. Huang Y, Hu Y, Mai W, Cai X, Song Y, Wu Y, et al. Plasma oxidized low-density lipoprotein is an independent risk factor in young patients with coronary artery disease. Dis Markers. 2011;31(5):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics—2008 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation. 2008;117(4):e25–146.

    Article  PubMed  Google Scholar 

  6. Powell JT. Vascular damage from smoking: disease mechanisms at the arterial wall. Vasc Med. 1998;3(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  7. Pringle E, Phillips C, Thijs L, Davidson C, Staessen JA, de Leeuw PW, et al. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J Hypertens. 2003;21(12):2251–7.

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 2001;38(3 Pt 2):606–11.

    Article  CAS  PubMed  Google Scholar 

  9. Zalba G, San José G, Moreno MU, Fortuño MA, Fortuño A, Beaumont FJ, et al. Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension. 2001;38(6):1395–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar KV, Das UN. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic Res Commun. 1993;19(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  11. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.

    Article  CAS  PubMed  Google Scholar 

  12. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cutler RG, Plummer J, Chowdhury K, Heward C. Oxidative stress profiling: part II. Theory, technology, and practice. Ann N Y Acad Sci. 2005;1055:136–58.

    Article  CAS  PubMed  Google Scholar 

  14. Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med. 2002;32(9):797–803.

    Article  CAS  PubMed  Google Scholar 

  15. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65(3):1009–16.

    Article  PubMed  Google Scholar 

  16. Renke J, Popadiuk S, Korzon M, Bugajczyk B, Wozniak M. Protein carbonyl groups’ content as a useful clinical marker of antioxidant barrier impairment in plasma of children with juvenile chronic arthritis. Free Radic Biol Med. 2000;29(2):101–4.

    Article  CAS  PubMed  Google Scholar 

  17. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459–67.

    Article  PubMed  Google Scholar 

  18. Daneshvar SA, Naqvi TZ. Carotid intima-media thickness and carotid plaques in cardiovascular risk assessment. Curr Cardiovasc Risk Rep. 2009;3(2):121–30.

    Article  Google Scholar 

  19. Dhananjayan R, Malati T, Brindha G, Kutala VK. Association of family history of type 2 diabetes mellitus with markers of endothelial dysfunction in South Indian population. Indian J Biochem Biophys. 2013;50(2):93–8.

    CAS  PubMed  Google Scholar 

  20. Kanters SD, Algra A, Banga JD. Carotid intima-media thickness in hyperlipidemic type I and type II diabetic patients. Diabetes Care. 1997;20(3):276–80.

    Article  CAS  PubMed  Google Scholar 

  21. Yoon JH, Kim JY, Park JK, Ko SB. Oxidative damage markers are significantly associated with the carotid artery intima-media thickness after controlling for conventional risk factors of atherosclerosis in men. PLoS One. 2015;10(3):e0119731.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359–64.

    Article  CAS  PubMed  Google Scholar 

  23. Rajesh M, Sulochana KN, Coral K, Punitham R, Biswas J, Babu K, et al. Determination of carbonyl group content in plasma proteins as a useful marker to assess impairment in antioxidant defense in patients with Eales’ disease. Indian J Ophthalmol. 2004;52(2):139–44.

    PubMed  Google Scholar 

  24. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62–71.

    Article  CAS  PubMed  Google Scholar 

  25. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  26. Espeland MA, Craven TE, Riley WA, Corson J, Romont A, et al. Reliability of longitudinal ultrasonographic measurements of carotid intimal-medial thicknesses. Asymptomatic Carotid Artery Progression Study Research Group. Stroke. 1996;27(3):480–5.

    Article  CAS  PubMed  Google Scholar 

  27. Oren A, Vos LE, Uiterwaal CS, Grobbee DE, Bots ML. Cardiovascular risk factors and increased carotid intima-media thickness in healthy young adults: the Atherosclerosis Risk in Young Adults (ARYA) Study. Arch Intern Med. 2003;163(15):1787–92.

    Article  PubMed  Google Scholar 

  28. Touboul PJ, Vicaut E, Labreuche J, Belliard JP, Cohen S, Kownator S, et al. Correlation between the framingham risk score and intima media thickness: the Paroi Artérielle et Risque Cardio-vasculaire (PARC) study. Atherosclerosis. 2007;192(2):363–9.

    Article  CAS  PubMed  Google Scholar 

  29. Howard G, Sharrett AR, Heiss G, Evans GW, Chambless LE, Riley WA, et al. Carotid artery intimal-medial thickness distribution in general populations as evaluated by B-mode ultrasound. ARIC Investig Stroke. 1993;24(9):1297–304.

    Article  CAS  Google Scholar 

  30. Hansa G, Bhargava K, Bansal M, Tandon S, Kasliwal RR. Carotid intima-media thickness and coronary artery disease: an Indian perspective. Asian Cardiovasc Thorac Ann. 2003;11(3):217–21.

    Article  PubMed  Google Scholar 

  31. O’Leary DH, Polak JF, Kronmal RA, Kittner SJ, Bond MG, Wolfson SK Jr, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. Stroke. 1992;23(12):1752–60.

    Article  PubMed  Google Scholar 

  32. Fateh-Moghadam S, Li Z, Ersel S, Reuter T, Htun P, Plöckinger U, et al. Platelet degranulation is associated with progression of intima-media thickness of the common carotid artery in patients with diabetes mellitus type 2. Arterioscler Thromb Vasc Biol. 2005;25(6):1299–303.

    Article  CAS  PubMed  Google Scholar 

  33. Jeevarethinam A, Venuraju S, Weymouth M, Atwal S, Lahiri A. Carotid intimal thickness and plaque predict prevalence and severity of coronary atherosclerosis: a pilot study. Angiology. 2015;66(1):65–9.

    Article  PubMed  Google Scholar 

  34. Agarwal AK, Gupta PK, Singla S, Garg U, Prasad A, et al. Carotid intimomedial thickness in type 2 diabetic patients and its correlation with coronary risk factors. J Assoc Physicians India. 2008;56:581–6.

    CAS  PubMed  Google Scholar 

  35. Mohan V, Ravikumar R, Shanthi Rani S, Deepa R. Intimal medial thickness of the carotid artery in South Indian diabetic and non-diabetic subjects: the Chennai Urban Population Study (CUPS). Diabetologia. 2000;43(4):494–9.

    Article  CAS  PubMed  Google Scholar 

  36. Limbu YR, Rajbhandari R, Sharma R, Singh S, Limbu D, Adhikari CM, et al. Carotid intima-media thickness (CIMT) and carotid plaques in young Nepalese patients with angiographically documented coronary artery disease. Cardiovasc Diagn Ther. 2015;5(1):1–7.

    PubMed  PubMed Central  Google Scholar 

  37. Raitakari OT, Juonala M, Kähönen M, Taittonen L, Laitinen T, Mäki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003;290(17):2277–83.

    Article  CAS  PubMed  Google Scholar 

  38. Kablak-Ziembicka A, Tracz W, Przewlocki T, Pieniazek P, Sokolowski A, et al. Association of increased carotid intima-media thickness with the extent of coronary artery disease. Heart. 2004;90(11):1286–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamasaki Y, Kodama M, Nishizawa H, Sakamoto K, Matsuhisa M, Kajimoto Y, et al. Carotid intima-media thickness in Japanese type 2 diabetic subjects: predictors of progression a relationship with incident coronary heart disease. Diabetes Care. 2000;23(9):1310–5.

    Article  CAS  PubMed  Google Scholar 

  40. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100(9):2153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vijaya Lakshmi SV, Naushad SM, Seshagiri Rao D, Kutala VK. Oxidative stress is associated with genetic polymorphisms in one-carbon metabolism in coronary artery disease. Cell Biochem Biophys. 2013;67(2):353–61.

    Article  CAS  PubMed  Google Scholar 

  42. Lakshmi SV, Naushad SM, Reddy CA, Saumya K, Rao DS, Kotamraju S, et al. Oxidative stress in coronary artery disease: epigenetic perspective. Mol Cell Biochem. 2013;374(1–2):203–11.

    Article  CAS  PubMed  Google Scholar 

  43. Cosentino F, Sill JC, Katusić ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension. 1994;23(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  44. Chen K, Thomas SR, Keaney JF Jr. Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med. 2003;35(2):117–32.

    Article  CAS  PubMed  Google Scholar 

  45. Majumdar S, Mukherjee S, Maiti A, Karmakar S, Das AS, Mukherjee M, et al. Folic acid or combination of folic acid and vitamin B(12) prevents short-term arsenic trioxide-induced systemic and mitochondrial dysfunction and DNA damage. Environ Toxicol. 2009;24(4):377–87.

    Article  CAS  PubMed  Google Scholar 

  46. Fischer PA, Dominguez GN, Cuniberti LA, Martinez V, Werba JP, Ramirez AJ, et al. Hyperhomocysteinemia induces renal hemodynamic dysfunction: is nitric oxide involved? J Am Soc Nephrol. 2003;14(3):653–60.

    Article  PubMed  Google Scholar 

  47. Dayal S, Arning E, Bottiglieri T, Böger RH, Sigmund CD, Faraci FM, et al. Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke. 2004;35(8):1957–62.

    Article  CAS  PubMed  Google Scholar 

  48. Ashfaq S, Abramson JL, Jones DP, Rhodes SD, Weintraub WS, Hooper WC, et al. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J Am Coll Cardiol. 2006;47(5):1005–11.

    Article  CAS  PubMed  Google Scholar 

  49. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816–23.

    Article  CAS  PubMed  Google Scholar 

  50. Seghrouchni I, Drai J, Bannier E, Rivière J, Calmard P, Garcia I, et al. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta. 2002;321(1–2):89–96.

    Article  CAS  PubMed  Google Scholar 

  51. Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999;13(1):23–30.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Kutala.

Ethics declarations

Conflict of interest

All authors have no conflict of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madisetty, M.K., Kumaraswami, K., Katkam, S. et al. Assessment of Oxidative Stress Markers and Carotid Artery Intima-Media Thickness in Elderly Patients Without and with Coronary Artery Disease. Ind J Clin Biochem 31, 278–285 (2016). https://doi.org/10.1007/s12291-015-0530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-015-0530-0

Keywords

Navigation