Skip to main content

Advertisement

Log in

Endothelial Dysfunction in Type 2 Diabetes Mellitus

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial dysfunction is an imbalance in the production of vasodilator factors and when this balance is disrupted, it predisposes the vasculature towards pro-thrombotic and pro-atherogenic effects. This results in vasoconstriction, leukocyte adherence, platelet activation, mitogenesis, pro-oxidation, impaired coagulation and nitric oxide production, vascular inflammation, atherosclerosis and thrombosis. Endothelial dysfunction is focussed as it is a potential contributor to the pathogenesis of vascular disease in diabetes mellitus. Under physiological conditions, there is a balanced release of endothelial-derived relaxing and contracting factors, but this delicate balance is altered in diabetes mellitus and atherosclerosis, thereby contributing to further progression of vascular and end-organ damage. This review focuses on endothelial dysfunction in atherosclerosis, insulin resistance, metabolic syndrome, oxidative stress associated with diabetes mellitus, markers and genetics that are implicated in endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACh:

Acetyl choline

AGE:

Advanced glycosylation end-product

Ang II:

Angiotensin II

AR:

Aldose reductase

CAD:

Coronary artery disease

cGMP:

Cyclic guanosine monophosphate

DAG:

Diacylglycerol

DM:

Diabetes mellitus

ECM:

Extra cellular matrix

ED:

Endothelial dysfunction

EDHF:

Endothelial derived hyperpolarizing factor

EDN1:

Endothelin-1

IRS1:

Insulin receptor substrate 1

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

GFAT:

Glutamine fructose-6-phosphate amidotransferase

GP:

Glycerol 3-phosphate

GSH:

Glutathione

hsCRP:

High sensitive C-reactive protein

IMT:

Intimal medial thickening

MAPK:

Mitogen activated protein kinase

MCP-1:

Monocyte chemo-attractant protein-1

MCP-1:

Monocyte chemotactic protein-1

MDA:

Malondialdehyde

MTHFR:

Methylene tetrahydrofolate reductase

NF-κB:

Nuclear factor κB

NO:

Nitric oxide

PA:

Phosphatidic acid

PAI-1:

Plasminogen activator inhibitor-1

PG:

Prostaglandin

PGI:

Prostacyclin

PIK3:

Phosphatidyl inositol-3′-kinase

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

SDH:

Sorbitol dehydrogenase

SNP:

Single nucleotide polymorphism

t-PA:

Tissue-type plasminogen activator

VCAM-1:

Vascular cell adhesion molecule-1

VSMC:

Vascular smooth muscle cell

vWF:

Von Willebrand factor

References

  1. Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation: part I. Circulation. 2003;108:1917–23.

    Article  PubMed  Google Scholar 

  2. Quyyumi AA. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med. 1998;105:32S–9S.

    Article  CAS  PubMed  Google Scholar 

  3. Mombouli JV, Vanhoutte PM. Endothelial dysfunction: from physiology to therapy. J mol cell Cardiol. 1999;31:61–74.

    Article  CAS  PubMed  Google Scholar 

  4. Furchgott RF. Albert Lasker medical research awards the discovery of endothelium—derived relaxing factor and its importance in the identification of nitric oxide. JAMA. 1996;276:1186–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kawashima S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis. Endothelium. 2004;11:99–107.

    Article  CAS  PubMed  Google Scholar 

  6. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA. 1996;93:9114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kB. Free Radic Biol Med. 2000;28:1317–27.

    Article  CAS  PubMed  Google Scholar 

  8. Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation. 2002;105:546–9.

    Article  CAS  PubMed  Google Scholar 

  9. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100:2153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Avogaro A, Albiero M, Menegazzo L, Kreutzenberg SD, Fadini GP. Endothelial dysfunction in diabetes—the role of reparatory mechanisms. Diabetes Care. 2011;34(2):285–90.

    Article  Google Scholar 

  11. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11(1):61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287:1209–15.

    Article  Google Scholar 

  13. Oyama J, Higashi Y, Node K. Do incretins improve endothelial function? Cardiovasc Diabetol. 2014;13:21.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tan KC, Chow WS, Tam SC, Ai VH, Lam CH, Lam KS, et al. Atorvastatin lowers C-reactive protein and improves endothelium-dependent vasodilation in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2002;87:563–8.

    Article  CAS  PubMed  Google Scholar 

  15. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  CAS  PubMed  Google Scholar 

  16. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  17. Kinlay S, Ganz P. Role of endothelial dysfunction in coronary artery disease and implications for therapy. Am J Cardiol. 1997;80(9A):11I–6I.

    Article  CAS  PubMed  Google Scholar 

  18. Trichon BH, Roe MT. Diabetes mellitus and ischemic heart disease. In: Marso SP, Stern DM, editors. Diabetes and cardiovascular disease integrating science and clinical medicine. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 355–78.

    Google Scholar 

  19. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haffner SM. Pre-diabetes, insulin resistance, inflammation and CVD risk. Diabetes Res Clin Pract. 2003;61(Suppl 1):S9–18.

    Article  CAS  PubMed  Google Scholar 

  21. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab. 2003;88:1417–27.

    Article  CAS  PubMed  Google Scholar 

  22. Rizzo V, McIntosh DP, Oh P, Schnitzer JE. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem. 1998;273:34724–9.

    Article  CAS  PubMed  Google Scholar 

  23. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low-density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999;274:32512–9.

    Article  CAS  PubMed  Google Scholar 

  24. Drab M, Verkade P, Elger M. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293:2449–52.

    Article  CAS  PubMed  Google Scholar 

  25. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ. High-density lipoprotein prevents oxidized low-density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem. 2000;275:11278–83.

    Article  CAS  PubMed  Google Scholar 

  26. Dzau VJ. Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension. 2001;37:1047–52.

    Article  CAS  PubMed  Google Scholar 

  27. Tummala PE, Chen XL, Sundell CL. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin angiotensin system and atherosclerosis. Circulation. 1999;100:1223–9.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications, part 1: diagnosis and classification of diabetes mellitus. Report of a WHO Consultation Geneva 1999, p. 43–46.

  29. Grundy SM, Brewer HB Jr., Cleeman JI, Smith SC Jr., Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung and Blood Institute/American Heart Association conference on scientific Issues related to definition. Circulation. 2004; 109:433–438.

  30. McVeigh GE, Cohn JN. Endothelial dysfunction and the metabolic syndrome. Curr Diab Rep. 2003;3:87–92.

    Article  PubMed  Google Scholar 

  31. Toikka JO, Ahotupa M, Viikari JSA, Niinikoski H, Taskinen MT, Irjala K, et al. Constantly low HDL cholesterol concentration relates to endothelial dysfunction and increased in vivo LDL-oxidation in healthy young men. Atherosclerosis. 1999;147:133–8.

    Article  CAS  PubMed  Google Scholar 

  32. Pieper GM, Langenstroer P, Siebeneich W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res. 1997;34:145–56.

    Article  CAS  PubMed  Google Scholar 

  33. Hazel L, Kenneth A, Roebuck O. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280:C719–41.

    Google Scholar 

  34. Maejima K, Nakano S, Himeno M, Tsuda S, Makiishi H, Ito T, et al. Increased basal levels of plasma nitric oxide in Type 2 diabetic subjects relationship to microvascular complications. J Diabetes Complic. 2001;15:135–43.

    Article  CAS  Google Scholar 

  35. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24:816–23.

    Article  CAS  PubMed  Google Scholar 

  36. Su Y, Liu XM, Sun YM, Jin HB, Fu R, Wang YY, et al. The relationship between endothelial dysfunction and oxidative stress in diabetes and prediabetes. Int J Clin Pract. 2008;62:877–82.

    Article  CAS  PubMed  Google Scholar 

  37. Peerapatdit T, Patchanans N, Likidlilid A, Poldee S, Sriratanasathavorn C. Plasma lipid peroxidation and antioxidant nutrients in type 2 diabetic patients. J Med Assoc Thai. 2006;89:S147–55.

    PubMed  Google Scholar 

  38. Bloomer RJ. Decreased blood antioxidant capacity and increased lipid peroxidation in young cigarette smokers compared to nonsmokers: impact of dietary intake. Nutr J. 2007;6:39.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Keenoy BMY, Vertommen J, De Leeuw I. Divergent effects of different oxidants on glutathione homeostasis and protein damage in erythrocytes from diabetic patients: effects of high glucose. Mol Cell Biochem. 2001;225:59–73.

    Article  Google Scholar 

  40. Wautier JL, Schmidt AM. Protein glycation: a firm link to endothelial cell dysfunction. Circ Res. 2004;95:233–8.

    Article  CAS  PubMed  Google Scholar 

  41. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990;173(3):932–9.

    Article  CAS  PubMed  Google Scholar 

  42. Arese P, Schwarzer E. Metabolic disorders: red cell alterations in diabetes mellitus. Berlin: Springer; Red cell membrane transport in health and disease 2003; 22:525–526.

  43. Nwose EU, Jelinek HF, Richards RS, Kerr PG. Changes in the erythrocyte glutathione concentration in the course of diabetes mellitus. Redox Rep. 2006;11(3):99–104.

    Article  CAS  PubMed  Google Scholar 

  44. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001;103:1813–8.

    Article  CAS  PubMed  Google Scholar 

  45. Sjoholm A, Nystrom T. Endothelial inflammation in insulin resistance. Lancet. 2005;565:610–2.

    Article  Google Scholar 

  46. Venugopal SK, Devaraj S, Jialal I. Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens. 2005;14:33–7.

    Article  CAS  PubMed  Google Scholar 

  47. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann NY Acad Sci. 2000;902:230–9.

    Article  CAS  PubMed  Google Scholar 

  48. Vita JA, Treasure CB, Nabel EG, Mclenachan JM, Fish RD, Yeung AC, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81(2):491–7.

    Article  CAS  PubMed  Google Scholar 

  49. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330:1041–6.

    Article  CAS  PubMed  Google Scholar 

  50. Gaeta G, De Michele M, Cuomo S, Guarini P, Fogila MC, Bond MG, et al. Arterial abnormalities in the offspring of patients with premature myocardial infarction. N Engl J Med. 2000;343:840–6.

    Article  CAS  PubMed  Google Scholar 

  51. Giugliano D, Ceriello A, Esposito K. Glucose metabolism and hyperglycemia. Am J Clin Nutr. 2008;87:217S–22S.

    CAS  PubMed  Google Scholar 

  52. Williams S. The association of the Glu298Asp polymorphism of endothelial nitric oxide synthase (eNOS) with outcome after subarachnoid hemorrhage. Doris Duke Med Stud J. 2003–2004;3:52–56.

  53. Zanchi A, Moczulski DK, Hanna LS, Wantman M, Warram JH, Krolewski AS. Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int. 2000;57:405–13.

    Article  CAS  PubMed  Google Scholar 

  54. Ahluwalia TS, Ahuja M, Rai TS, Kohli HS, Sud K, Bhansali A, et al. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians. Mol Cell Biochem. 2008;314:9–17.

    Article  CAS  PubMed  Google Scholar 

  55. Wang XL, Greco M, Sim AS, Duarte N, Wang J, Wilcken DE. Effect of CYP1A1 MspI polymorphism on cigarette smoking related coronary artery disease and diabetes. Atherosclerosis. 2002;162(2):391–7.

    Article  CAS  PubMed  Google Scholar 

  56. Baserga R. The contradictions of the insulin-like growth factor 1 receptor. Oncogene. 2000;19(49):5574–81.

    Article  CAS  PubMed  Google Scholar 

  57. Zang Y, Wat N, Stratton IM, Warren-Perry MG, Orho M, Groop L, et al. UKPDS19: heterogeneity in NIDDM: separate contribution of IRS-1 and beta3-adrenergic-receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. Diabetologia. 1996;39:1505–11.

    Article  Google Scholar 

  58. Hribal ML, Federici M, Porzio O, Lauro D, Borboni P, Accili D, et al. The Gly3Arg972 amino acid polymorphism in insulin receptor substrate-1 affects glucose metabolism in skeletal muscle cells. J Clin Endocrinol Metab. 2000;85:2004–13.

    CAS  PubMed  Google Scholar 

  59. Federici M, Hribal ML, Ranalli M, Marselli L, Porzio O, Lauro R, et al. The common Arg972 polymorphism in insulin receptor substrate-1 causes apoptosis of human pancreatic islets. FASEB J. 2001;15:22–4.

    CAS  PubMed  Google Scholar 

  60. Holzl B, Iglseder B, Stadlmayr A, Hedegger M, More E, Reiter R, et al. Intima media thickness of carotid arteries is reduced in heterozygous carriers of the Gly972Arg variant in the insulin receptor substrate-1 gene. Eur J Clin Invest. 2003;33(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  61. Dhananjayan R, Malati T, Brindha G, Kutala VK. Association of family history of type 2 diabetes mellitus with markers of endothelial dysfunction in South Indian population. Indian J Biochem Biophys. 2013;50:93–8.

    CAS  PubMed  Google Scholar 

  62. Schalkwijk CG, Stehouwer CDA. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci. 2005;109:143–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dhananjayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhananjayan, R., Koundinya, K.S.S., Malati, T. et al. Endothelial Dysfunction in Type 2 Diabetes Mellitus. Ind J Clin Biochem 31, 372–379 (2016). https://doi.org/10.1007/s12291-015-0516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-015-0516-y

Keywords

Navigation