Skip to main content

Advertisement

Log in

Molecular Studies on Coronary Artery Disease—A Review

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Coronary artery disease (CAD) remains the major cause of mortality and morbidity in the entire world population. The conventional risk factors of CAD include hypertension, hyperlipidemia, diabetes mellitus, family history, smoking etc. These factors contribute only 50 % of the total risk of CAD. For providing a complete risk assessment in CAD, it is mandatory to have well-planned clinical, biochemical and genetic studies in patients with CAD and subjects who are at risk of developing CAD. In this review an attempt is made to critically evaluate the conventional and emerging risk factors which predispose the individual to CAD. Specifically, the molecular basis of CAD including high oxidative stress, low antioxidant status and increased DNA damage are covered. A comprehensive and multifactorial approach to the problem is the better way to reduce the morbidity and mortality of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashif M. Role of fruit, vegetables and spice in diabetes. Int J Nutr Pharm Neurol Dis. 2011;1:27–35.

    Article  Google Scholar 

  2. Das S, Yadav D, Narang R, Das N. Interrelationship between lipid peroxidation, ascorbic acid and superoxide dismutase in coronary artery disease. Curr Sci. 2002;83:488–91.

    CAS  Google Scholar 

  3. Nishtar S. Prevention coronary heart disease in South Asia. Lancet. 2002;360:1015–8.

    Article  PubMed  Google Scholar 

  4. Ghaffar A, Reddy KS, Singhi M. Burden of non-communicable diseases in South Asia. BMJ. 2004;328:807–10.

    Article  PubMed  Google Scholar 

  5. Reddy KS, Shah B, Varghese C, Ramadoss A. Responding to the threat of chronic diseases in India. Lancet. 2005;366:1746–51.

    Google Scholar 

  6. Indrayan A. Forecasting vascular disease cases and associated mortality in India. Reports of the National Commission on Macroeconomics and Health. Ministry of Health and Family Welfare, India 2005. Available at: http://www.whoindia.org/EN/Section102/Section201_888.htm. Cited 2 Nov 2006.

  7. Gupta R, Gupta VP, Sarna M, Bhatnagar S, Thanvi J, Sharma V, et al. Prevalence of coronary heart disease and risk factors in an urban Indian population: Jaipur Heart Watch-2. Indian Heart J. 2002;54:59–66.

    PubMed  Google Scholar 

  8. Knopp RH. Risk factors for coronary artery disease in women. Am J Cardiol. 2002;89:28–34.

    Article  Google Scholar 

  9. Guven M, Guven SG, Oz E. DNA repair gene XRCC1 and XPD polymorphisms and their association with coronary artery disease risks and micronucleus frequency. Heart Vessels. 2007;22:355–60.

    Article  PubMed  Google Scholar 

  10. Iftikar JK, Christie MB. Conditional risk factors for atherosclerosis. Mayo Clin Proc. 2005;80(2):219–30.

    Article  Google Scholar 

  11. Rao HB, Govindarju V, Manjunath CN. Risk protection—homocysteine in coronary heart disease. Indian J Clin Biochem. 2007;22(1):18–27.

    Article  CAS  Google Scholar 

  12. Stephens JW, Humphries SE. The molecular genetics of cardiovascular disease: clinical implications. J Intern Med. 2003;253(2):120–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kasliwal RR, Kulshreshtha A, Agrawal S, Bansal M, Trehan N. Prevalence of cardiovascular risk factors in Indian patients undergoing coronary artery bypass surgery. JAPI. 2006;54:371–5.

    PubMed  CAS  Google Scholar 

  14. Muhlestein JB. Secondary prevention of coronary artery disease with antimicrobials: current status and future directions. Am J Cardiovasc Drugs. 2002;2:107–18.

    Article  PubMed  CAS  Google Scholar 

  15. Botto N, Mssetti S, Petrozzi L. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coron Artery Dis. 2002;13:269–74.

    Article  PubMed  Google Scholar 

  16. Andreassi MG. Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage. Mutat Res. 2003;543:67–86.

    Article  PubMed  CAS  Google Scholar 

  17. Terry MB, Gammon MD, Zhang FF, et al. Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk. Cancer Epidemiol Biomark Prev. 2004;13:2053–8.

    CAS  Google Scholar 

  18. Sak SC, Barrett HJ, Paul BA, et al. DNA repair gene XRCC1 polymorphism and bladder cancer risk. BMC Genet. 2007;8:13.

    Article  PubMed  CAS  Google Scholar 

  19. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104:503–16.

    Article  PubMed  CAS  Google Scholar 

  20. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  21. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  PubMed  CAS  Google Scholar 

  22. Crowther MA. Pathogenesis of atherosclerosis. Hematology. 2005;1(1):436–41.

    Article  Google Scholar 

  23. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA, et al. Heart Study Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med. 1998;338:1650–6.

    Article  PubMed  CAS  Google Scholar 

  24. Rajadurai J, Arokiasami J, Pasamanichan K, Shatar A, Mei-Lin O. Coronary disease in Asians. Aust NZ J Med. 1992;22:345–8.

    Article  CAS  Google Scholar 

  25. Enas EA, Garg A, Davidson MA. Coronary heart disease and its risk factors in the first generation immigrant Asian Indians to the United States of America. Indian Heart J. 1996;48:343–54.

    PubMed  CAS  Google Scholar 

  26. Simon AS, Roy DD, Jayapal V, Vijayakumar T. Biochemical and genetic studies on cardiometabolic syndrome. Ind J Clin Biochem. 2010;25(2):164–8.

    Article  Google Scholar 

  27. Enriquez-Sarano M, Klodas E, Garratt KN, Bailey KR, Tajik AJ, Holmes DR. Secular trends in coronary atherosclerosis analysis in patients with valvular regurgitation. N Engl J Med. 1996;335:316–22.

    Article  PubMed  CAS  Google Scholar 

  28. Gardner CD, Tribble DL, Young DR, Ahn D, Fortmann SP. Population frequency distributions of HDL, HDL(2), and HDL(3) cholesterol and apolipoproteins A-I and B in healthy men and women and associations with age, gender, hormonal status, and sex hormone use the Stanford Five City Project. Prev Med. 2000;31:335–45.

    Article  PubMed  CAS  Google Scholar 

  29. Cui Y, Blumenthal RS, Flaws JA. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161:1413–9.

    Article  PubMed  CAS  Google Scholar 

  30. Higgins M. Epidemiology and prevention of coronary heart disease in families. Am J Med. 2000;108(5):387–95.

    Article  PubMed  CAS  Google Scholar 

  31. Kardia SL, Modell SM, Peyser PA. Family-centered approaches to understanding and preventing coronary heart disease. Am J Prev Med. 2003;24:143–51.

    Article  PubMed  Google Scholar 

  32. Enas EA, Senthilkumar A. Coronary artery disease in Asian Indians: an update and review. Coron Artery Dis. 2005;3:21–57.

    Google Scholar 

  33. Begom R, Singh R. Prevalence of coronary artery disease and risk factors in urban population of south and north India. Acta Cardiol. 1995;3:227–40.

    Google Scholar 

  34. Gupta A, Gupta R, Lal B, Singh AK, Kothari K. Prevalence of coronary risk factors among Indian physicians. J Assoc Physicians India. 2001;49:1148–52.

    PubMed  CAS  Google Scholar 

  35. Misra A, Reddy R, Reddy KS. Clustering of impaired glucose tolerance, hyperinsulinemia, and dyslipidemia in young north Indian patients with CHD: a preliminary case–control study. Indian Heart J. 1999;51:275–80.

    PubMed  CAS  Google Scholar 

  36. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343:16–22.

    Article  PubMed  CAS  Google Scholar 

  37. Joanne S. 100 Years ago, exercise was blended into daily life. Available at: http://www.npr.org/templates/story/story.php?storyId=127525702. Cited 23 Nov 2010.

  38. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I Epidemiologic Follow-Up. Study Arch Intern Med. 2001;161:996–1002.

    Article  CAS  Google Scholar 

  39. Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev. 2003;83(4):1069–112.

    PubMed  CAS  Google Scholar 

  40. Kendall DM, Sobel BE, Coulston AM, Peters Harmel AL, Mclean BK, Peragallo-Dittko V, et al. The insulin resistance syndrome and coronary artery disease. Coron Artery Dis. 2003;14:335–48.

    Article  PubMed  Google Scholar 

  41. Benowitz NL. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis. 2003;46:91–111.

    Article  PubMed  CAS  Google Scholar 

  42. Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation. 2005;111:2684–98.

    Article  PubMed  Google Scholar 

  43. Heiss C, Amabile N, Lee AC, Real WM, Schick SF, Lao D, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function. J Am Coll Cardiol. 2008;51:1760–71.

    Article  PubMed  CAS  Google Scholar 

  44. Flouris AD, Vardavas CI, Metsios GS, Tsatsakis AM, Koutedakis Y. Biological evidence for the acute health effects of secondhand smoke exposure. Am J Physiol Lung Cell Mol Physiol 2010;298(1):3–12.

    Google Scholar 

  45. Simon AS, Roy DD, Jayapal V, Vijayakumar T. Somatic DNA damages in cardiovascular autonomic neuropathy. Ind J Clin Biochem. 2011;26(1):50–6.

    Article  CAS  Google Scholar 

  46. Goldberg IJ, Mosca L, Piano MR, Fisher EA. AHA Science Advisory: wine and your heart: a science advisory for healthcare professionals from the Nutrition Committee, Council on Epidemiology and Prevention, and Council on Cardiovascular Nursing of the American Heart Association. Circulation. 2001;103:472–5.

    Article  PubMed  CAS  Google Scholar 

  47. Andréasson S, Allebeck P. Alcohol as medication is no good. More risks than benefits according to a survey of current knowledge. Lakartidningen. 2005;102(9):632–7.

    PubMed  Google Scholar 

  48. Numminen H, Syrjala M, Benthin G, Kaste M, Hillbom M. The effect of acute ingestion of a large dose of alcohol on the hemostatic system and its circadian variation. Stroke. 2000;31:1269–73.

    Article  PubMed  CAS  Google Scholar 

  49. Djoussé L, Gaziano JM. Alcohol consumption and heart failure: a systematic review. Curr Atheroscler Rep. 2008;10(2):117–20.

    Article  PubMed  Google Scholar 

  50. Saremi A, Arora R. The cardiovascular implications of alcohol and red wine. Am J Ther. 2008;15(3):265–77.

    Article  PubMed  Google Scholar 

  51. Mobashir M, Varshney D, Gupta S. Cardiovascular risk factors in Type 2 diabetes mellitus [abstract]. Medicine Update 2005;254–62.

  52. Achari V, Thakur AK, Sinha AK. The metabolic syndrome—its prevalence and association with coronary artery disease in type 2 diabetes. JIACM. 2006;7:32–8.

    Google Scholar 

  53. Leiter LA, Ceriello A, Davidson JA, Hanefeld M, Monnier L, Owens DR, et al. International Prandial Glucose Regulation (PGR) Study Group: postprandial glucose regulation: new data and new implications. Clin Ther. 2005;27(Suppl):42–56.

    Article  CAS  Google Scholar 

  54. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  55. Tocci G, Valenti V, Sciarretta S, Volpe M. Multivariate risk assessment and risk score cards in hypertension. Vasc Health Risk Manag. 2007;3(3):313–20.

    PubMed  Google Scholar 

  56. Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens. 2000;13(2):3–10.

    Article  Google Scholar 

  57. Lassègue B, Griendling K. Reactive oxygen species in hypertension. An update. Am J Hypertens. 2004;17:852–60.

    Article  PubMed  CAS  Google Scholar 

  58. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004;122:339–52.

    Article  PubMed  CAS  Google Scholar 

  59. Rodrigo R, Passalacqua W, Araya J, Orellana M, Rivera G. Implications of oxidative stress and homocysteine in the pathophysiology of essential hypertension. J Cardiovasc Pharmacol. 2003;42:453–61.

    Article  PubMed  CAS  Google Scholar 

  60. Miyajima K, Minatoguchi S, Ito Y, et al. Reduction of QTc dispersion by the angiotensin II receptor blocker valsartan may be related to its anti-oxidative stress effect in patients with essential hypertension. Hypertens Res. 2007;30:307–13.

    Article  PubMed  CAS  Google Scholar 

  61. Third Report of the National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report [special communication]. Circulation 2002;106:3143–21.

    Google Scholar 

  62. Rader DJ, Puré E. Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab. 2005;1:223–30.

    Article  PubMed  CAS  Google Scholar 

  63. Shaikh AK, Suryakar AN. Oxidative stress and antioxidant status before and after supplementation of A-Z anti-oxidant tablets in coronary artery disease. Biomed Res. 2009;20(2):136–40.

    CAS  Google Scholar 

  64. Jessup W, Wilson P, Gaus K, et al. Oxidized lipoproteins and macrophages. Vascul Pharmacol. 2002;38(4):239–48.

    Article  PubMed  CAS  Google Scholar 

  65. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Bass KM, Newschaffer CJ, Klag MJ, Bush TL. Plasma lipoprotein levels as predictors of cardiovascular death in women. Arch Intern Med. 1993;153:2209–16.

    Article  Google Scholar 

  66. Shao B, Heinecke JW. HDL, lipid peroxidation, and atherosclerosis. J Lipid Res. 2009;50:599–601.

    Article  PubMed  CAS  Google Scholar 

  67. Eberly LE, Stamler J, Neaton JD. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch Intern Med. 2003;163:1077–83.

    Article  PubMed  Google Scholar 

  68. Jonsson S, Hedblad B, Engstrom G, Nilsson P, Berglund G, Janzon L. Influence of obesity on cardiovascular risk: twenty-three-year follow-up of 22,025 men from an urban Swedish population. Int J Obes Relat Metab Disord. 2002;26:1046–53.

    Article  PubMed  CAS  Google Scholar 

  69. Halcox J, Zalos G, Charakida M, Quyyumi AA. Obesity predicts coronary endothelial dysfunction independently of inflammation, atherosclerosis, and conventional risk factors. J Am Coll Cardiol 2004;43 (suppl A):485.

    Google Scholar 

  70. Despres JP. Abdominal obesity: the most prevalent cause of the metabolic syndrome and related cardiometabolic risk. Eur Heart J. 2006;8(Suppl):4–12.

    Google Scholar 

  71. Janiszewski PM, Kuk JL, Ross R. Is the reduction of lower-body subcutaneous adipose tissue associated with elevations in risk factors for diabetes and cardiovascular disease? Diabetologia. 2008;51:1475–82.

    Article  PubMed  CAS  Google Scholar 

  72. Chambers JC, Obeid OA, Refsum H. Plasma homocysteine concentration and risk of coronary heart disease in UK Indian Asians and European men. Lancet. 2000;355:523–7.

    Article  PubMed  CAS  Google Scholar 

  73. Enas EA. Lipoprotein (a) is an important genetic risk factor for coronary artery disease in Asian Indians. Am J Cardiol. 2001;88:201–2.

    Article  PubMed  CAS  Google Scholar 

  74. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.

    Article  PubMed  CAS  Google Scholar 

  75. Chen J, Mehta JL. Role of oxidative stress in coronary heart disease. Ind Heart J. 2004;56:1–15.

    CAS  Google Scholar 

  76. Griffiths HR. Chemical modifications of biomolecules by oxidants. In: The handbook of environmental chemistry, vol. 20. New York: Springer; 2005. pp. 160–71.

  77. Totter JR. Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci USA. 1980;77:1763–7.

    Article  PubMed  CAS  Google Scholar 

  78. Ames BN. Endogenous oxidative DNA damage, aging, and cancer. Free Radical Res Commun. 1989;7:121–8.

    Article  CAS  Google Scholar 

  79. Martinet W, Knaapen MWM, De Meyer GRY, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106:927–32.

    Article  PubMed  CAS  Google Scholar 

  80. Magder S. Reactive oxygen species: toxic molecules or spark of life? Crit Care. 2006;10(208):211–20.

    Google Scholar 

  81. Mahmoudi M, Mercer J, Bennett M. DNA damage and repair in atherosclerosis Cardiovascular Research. 2006;71:259–68.

    CAS  Google Scholar 

  82. Uchida K. Forum: role of oxidation in atherosclerosis: role of reactive aldehyde in cardiovascular diseases. Free Radical Biol Med. 2000;28(12):1685–96.

    Article  CAS  Google Scholar 

  83. Zschenker O, Illies T, Ameis D. Overexpression of lysosomal acid lipase and other proteins in atherosclerosis. J Biochem. 2006;140(1):23–38.

    Article  PubMed  CAS  Google Scholar 

  84. Kaur K, Bedi G, Kaur M, Vij A, Kaur I. Lipid peroxidation and the levels of antioxidant enzymes in coronary artery disease. Indian J Clin Biochem. 2008;23(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  85. Patri M, Padmini A, Babu PP. Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: a brief perspective. Ann Neurosci. 2009;16(1):22–30.

    Google Scholar 

  86. Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C, et al. Oxidative stress and homocysteine in coronary artery disease. Clin Chem. 2001;47(5):887–92.

    PubMed  CAS  Google Scholar 

  87. Simon AS, Anoop V, Chithra V, Vijayakumar T. Evaluation of oxidative stress and antioxidant status in coronary artery disease patients with smoking and/or alcoholism. Pushpagiri Med J. 2011;3(1):25–8.

    Google Scholar 

  88. Koutur SJ, Memon L, Stefanovic A, Spasic S, Kalimanovska VS, Bogavac SN. Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients. Clin Biochem. 2007;40:181–7.

    Article  CAS  Google Scholar 

  89. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291–5.

    PubMed  CAS  Google Scholar 

  90. Patel S, Sinha A, Parmar D. An update on the role of environmental factors in Parkinson’s disease. Annu Neurosci. 2005;12(4):79–86.

    Article  CAS  Google Scholar 

  91. Tamer L, Sucu N, Polat G, Ercan B, Aytacoglu B, Yucebilgic G, et al. Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch Med Res. 2002;33(3):257–60.

    Article  PubMed  CAS  Google Scholar 

  92. Nikam SV, Nikam PS, Chandrashekar MR, Kalsad ST, Jnaneshwara KB. Role of lipid peroxidation, glutathione and antioxidant enzymes in H1N1 Influenza. Biomed Res. 2010;21(4):457–60.

    CAS  Google Scholar 

  93. Akila D, Souza B, Prashant V, D’Souza V. Oxidative injury and antioxidants in coronary artery bypass graft surgery: off pump CABG significantly reduces oxidative stress. Clin Chem Acta. 2007;375:147–52.

    Article  CAS  Google Scholar 

  94. Hsu CH, Chi BC, Liu MY, Li JH, Chen CJ, Chen RY. Phosphine-induced oxidative damage in rats: role of glutathione. Toxicology. 2002;179:1–8.

    Article  PubMed  CAS  Google Scholar 

  95. Singh PP, Chandra A, Mahdi F, Roy A, Sharma P. Reconvene and reconnect the antioxidant hypothesisin human health and disease. Ind J Clin Biochem. 2010;25(3):225–43.

    Article  CAS  Google Scholar 

  96. Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee J, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003;22(1):18–35.

    Article  PubMed  CAS  Google Scholar 

  97. Sood R, Narang APS, Abraham R, Arora U, Calton R, Sood N. Changes in vitamin C and vitamin E during oxidative stress in myocardial reperfusion. Indian J Physiol Pharmacol. 2007;51(2):165–9.

    PubMed  CAS  Google Scholar 

  98. Bhakui P, Chandra M, Misra MK. Levels of free radical scavengers and antioxidants in postreperfused patients of myocardial infarction. Curr Sci. 2005;89(1):168–70.

    Google Scholar 

  99. Marjani AJ. Plasma lipid peroxidation zinc and erythrocyte Cu–Zn superoxide dismutase enzyme activity in patients with type 2 Diabetes Mellitus in Gorgan city. Internet J Endocrinol. 2005;2:1–11.

    Google Scholar 

  100. Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA. 1973;70:1753–6.

    Article  PubMed  CAS  Google Scholar 

  101. Schwartz SM, Murry CE. Proliferation and the monoclonal origins of atherosclerotic lesions. Annu Rev Med. 1998;49:437–60.

    Article  PubMed  CAS  Google Scholar 

  102. Andreassi MG, Botto N, Colombo MG, Biagini A, Clerico A. Genetic instability and atherosclerosis: can somatic mutations account for the development of cardiovascular diseases? Environ Mol Mutagen. 2000;35(4):265–9.

    Google Scholar 

  103. Li JJ, Gao RL. Should atherosclerosis be considered a cancer of the vascular wall? Med Hypotheses. 2005;64(4):694–8.

    Article  PubMed  CAS  Google Scholar 

  104. Trosko J, Chang C. An integrative hypothesis linking cancer, diabetes, and atherosclerosis: the role of mutations and epigenetic changes. Med Hypotheses. 1980;6:455–68.

    Article  PubMed  CAS  Google Scholar 

  105. Wakabayashi K. Animal studies suggesting involvement of mutagen/carcinogen exposure in atherosclerosis. Mutat Res. 1990;239:181–7.

    Article  PubMed  CAS  Google Scholar 

  106. Sadhu D, Ramos K. Modulation by retinoic acid of spontaneous and benzo (a) pyrene-induced C-HA-RAS expression. In: Bronzetti G,Hayatsu H, De Flora S, Waters MD, Shankel D, editors. Antimutagenesis and anticarcinogenesis mechanism. Portland: Book News, 1993 Inc. vol. III. pp. 263–8.

  107. Parkes JL, Cardell RR, Hubbard FC, Hubbard D, Meltzer A, Penn A. Cultured human atherosclerotic plaque smooth muscle cells retain transforming potential and display enhanced expression of the myc protooncogene. Am J Pathol. 1991;138:765–75.

    PubMed  CAS  Google Scholar 

  108. Speir E, Modali R, Huang ES, Leon MB, Shawl F, Finkel T, Epstein SE. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science. 1994;265:391–4.

    Article  PubMed  CAS  Google Scholar 

  109. Matturri L, Cazzullo A, Turconi P, Lavezzi AM. Cytogenetic aspects of cell proliferation in atherosclerotic plaques. Cardiologia. 1997;42:833–6.

    PubMed  CAS  Google Scholar 

  110. Tokunaga O, Satoh T, Yamasaki F, Wu L. Multinucleated variant endothelial cells (MVECs) in human aorta: chromosomal aneuploidy and elevated uptake of LDL. Semin Thromb Hemost. 1998;24:279–84.

    Article  PubMed  CAS  Google Scholar 

  111. Fossel M. Telomerase and the aging cell: implications for human health. JAMA. 1998;279:1732–5.

    Article  PubMed  CAS  Google Scholar 

  112. Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 1994;54:5059–63.

    PubMed  CAS  Google Scholar 

  113. Mc Caffrey TA, Du B, Consigli S, Szabo P, Bray PJ, Hartner L, et al. Genomic instability in the type II TGF-beta 1 receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest. 1997;100:2182–8.

    Article  CAS  Google Scholar 

  114. Andreassi MG, Botto N. DNA damage as a new emerging risk factor in atherosclerosis. Trends Cardiovasc Med. 2003;13:270–5.

    Article  PubMed  CAS  Google Scholar 

  115. Bertazzi PA. Industrial disasters and epidemiology: a review of recent experiences. Scand J Work Environ Health. 1989;15:85–100.

    Article  PubMed  CAS  Google Scholar 

  116. Van Schooten FJ, Hirvonen A, Maas LM, De Mol BA, Kleinjans JCS, Bell DA, Durrer JD. Putative susceptibility markers of coronary artery disease: association between VDR genotype, smoking, and aromatic DNA adduct levels in human right atrial tissue. FASEB. 1998;12:1409–17.

    Google Scholar 

  117. Renner SM, Massel D, Moon BC. Mediastinal irradiation: a risk factor for atherosclerosis of the internal thoracic arteries. Can J Cardiol. 1999;15:597–600.

    PubMed  CAS  Google Scholar 

  118. Botto N, Rizza A, Colombo M, Mazzone A, Manfredi S, Masetti S, et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001;493:23–30.

    Article  PubMed  CAS  Google Scholar 

  119. Basha BJ, Bakris GL, Sowers JR. Pathogenesis of atherosclerotic vascular disease. In: Bakris GL, Caralis DG, editors. Lower extremity arterial disease. Totowa: Humana Press Inc.; 2005. p. 181–99.

    Google Scholar 

  120. Andreassi MG. Nucleic acid oxidation and the pathogenesis of cardiovascular diseases. In: Evans MD, Cooke MS, editors. Oxidative damage to nucleic acids. Molecular Biology Intelligence Unit. Springer: New York; 2007. pp. 141–52.

  121. Bazo AP, Salvadori D, Salvadori RAF, Sodré LP, da Silva GN, de Camargo EA. DNA repair gene polymorphism is associated with the genetic basis of atherosclerotic coronary artery disease. Cardiovasc Pathol. 2009;20(1):9–15.

    Article  CAS  Google Scholar 

  122. Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Brunicardi FC. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn. 2010;10(2):173–85.

    Article  PubMed  CAS  Google Scholar 

  123. Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:891–937.

    Article  PubMed  CAS  Google Scholar 

  124. Fenech M. The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res. 1993;285:35–44.

    Article  PubMed  CAS  Google Scholar 

  125. Demirbag R, Yilmaz R, Gur M, Celik H, Guzel S, Selek S, et al. DNA damage in metabolic syndrome and its association with antioxidative and oxidative measurements. Int J Clin Pract. 2006;60:1187–93.

    Article  PubMed  CAS  Google Scholar 

  126. Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis. 2008;198(2):347–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks and gratitude to the CEO of Genetika, Centre for Advanced Genetic Studies, Thiruvananthapuram & to the faculty of Department of Biochemistry and Anatomy, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla for their advice and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Supriya Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, A.S., Vijayakumar, T. Molecular Studies on Coronary Artery Disease—A Review. Ind J Clin Biochem 28, 215–226 (2013). https://doi.org/10.1007/s12291-013-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-013-0303-6

Keywords

Navigation