Skip to main content
Log in

Lipid peroxidation and the levels of antioxidant enzymes in coronary artery disease

  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Coronary Artery Disease is the major cause of mortality and morbidity worldwide. Traditional risk factors account for only half of the morbidity and mortality from coronary artery disease. There is substantial evidence that oxidative stress plays the major role in the atherosclerotic process. The present study was undertaken to evaluate the level of lipid peroxidation (by measuring malondialdehyde) and antioxidant enzymes (ceruloplasmin, glutathione, superoxide dismutase) in coronary artery disease. Serum malondialdehyde levels and serum ceruloplasmin levels were significantly raised in all the subgroups of study group as compared to control group (p<0.001). Whole blood glutathione levels and hemolysate superoxide dismutase activity was significantly decreased in all the subgroups of study group as compared to control group (p<0.001). Above results suggests that the patients of coronary artery disease show increased oxidative stress and decreased levels of antioxidant enzymes. So it is recommended that the management protocol for coronary artery disease patients should include antioxidant supplementation along with simultaneous lowering of lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okuda M, Inoue N, Azumi H, Seno T, Sumi Y, Hirata K, et al. Expression of Glutardoxin in Human Coronary Arteries. Its potential role in antioxidant protection against atherosclerosis. Arterioscl Thromb Vasc Biol 2001;21:1483–1495.

    Article  PubMed  CAS  Google Scholar 

  2. Sen CK. Oxygen toxicity and antioxidants. Ind J Physiol Pharmacol 1995;39(3):177–196.

    CAS  Google Scholar 

  3. Sainani GS, Sawhney MJ, Sainani RG. Oxidative stress: A key factor in the pathogenesis of chronic diseases. Med Update 1997;7:1–5.

    Google Scholar 

  4. Das S, Yadav D, Narang R, Das N. Interrelationship between lipid peroxidation, ascorbic acid and superoxide dismutase in coronary artery disease. Curr Sci 2002;83(4):488–491.

    CAS  Google Scholar 

  5. Ceconi C, Cargnoni A, Pasini E, Condorelli E, Curello S, Ferrari R. Lipid peroxidation during myocardial reperfusion. Mol Cell Biochem III 1992;9:49–54.

    Google Scholar 

  6. Onvural B, Ozture H, Onvural A, Fadiloglu M. Lipid peroxidation and lipid metabolism in postmenopausal women. Turk Med Sci 1998;28:519–524.

    CAS  Google Scholar 

  7. Jayakumari N, Ambikakumari V, Balakrishnan KG, Iyer BK. Antioxidant status in relation to free radical production during stable and unstable angina syndromes. Atherosclerosis 1992;94:183–190

    Article  PubMed  CAS  Google Scholar 

  8. Tsukasa M, Sasaki J, Hiroshi K, Koichi H, Yoichi T, Akira M, et al. Serum glycoproteins and severity of Atherosclerosis. Am Heart J 1995;129(2):234–238.

    Article  Google Scholar 

  9. Lamb DJ, Leake DS. Acidic pH enables caeruloplasmin to catalyse the modification of low density lipoprotein. FEBS Lett 1994;338(2):122–126.

    Article  PubMed  CAS  Google Scholar 

  10. Fox PL, Mazumdar B, Ehrenwald E, Mukhopadhyay CK. Ceruloplasmin and cardiovascular disease. Free Radic Biol Med 2000;28(12):1735–1744.

    Article  PubMed  CAS  Google Scholar 

  11. Ward JR, Timothy JP. Free Radicals. In: Marshell WJ, Bangert SK, editors. Clinical biochemistry: metabolic and clinical aspects. Churchill Livingstone Publications 1995:766–771.

  12. Elliot M, Braunwald E. Acute Myocardial Infarction. In: Braunwald E, Ziper DP, Libby P, Ponow RO, editors. Braunwald Zipes Libby Heart disease. A Textbook of Cardiovascular Medicine, 6th Edition. WB Sanuders Company, 2001:1114–1231.

  13. Cannon CP, Braunwald E. Unstable Angina. In: Braunwald E, Ziper DP, Libby P, Ponow RO, editors. Braunwald Zipes Libby Heart disease. A Textbook of Cardiovascular Medicine, 6th Edition. WB Saunders Company, 2001:1231–1232.

  14. Fringes CS, Dunn RT. A colorimetric method for determination of total serum lipids based on the sulfophosphovanillin reaction. Am J Clin Pathol 1970;53:89–91.

    Google Scholar 

  15. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20:470–475.

    PubMed  CAS  Google Scholar 

  16. McGowan MW, Artin JD, Zak B. A peroxidase coupled method for the colorimetric determination of triglycerides. Clin Chem 1983;29:538–542.

    PubMed  CAS  Google Scholar 

  17. Lopes Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high density lipoproteins separated by three different methods. Clin Chem 1977;23:882–884.

    PubMed  CAS  Google Scholar 

  18. Frieldewald WT, Levy RS, Friedricksen DS. Estimation of concentration of low density lipoprotein cholesterol in plasma without rise of preparative ultracentrifuge. Clin Chem 1972;18:499–502.

    Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by Thiobarbituric acid reaction. Anal Biochem 1979;95:351–358.

    Article  PubMed  CAS  Google Scholar 

  20. Ravin H. An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med 1961;58:161–168.

    PubMed  CAS  Google Scholar 

  21. Marklund S, Marklund G. Involvement of the superoxide anion radical in the auto-oxidation and a convenient assay for SOD. Eur J Biochem 1974;47:469–474.

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Fari AL. Protein measurement with Folin reagent. J Biol Chem 1951;193:265–275

    PubMed  CAS  Google Scholar 

  23. Beutler E, Duran O, Kelly BM. Improved method of determination of blood glutathione. J Lab Clin Med 1963;61:882–888.

    PubMed  CAS  Google Scholar 

  24. Panichi V, Taccola D, Rizza MG, Consani C, Migliori M, Filipi C, et al. Ceruloplasmin and acute phase protein levels are associated with cardiovascular disease in chronic dialysis patients. J Nephrol 2004;17:715–720.

    PubMed  CAS  Google Scholar 

  25. Engsrom G, Lind P, Hedblad B, Stavenow L, Janzon L, Lindgrade E. Effects of cholesterol and inflammation sensitive plasma proteins on incidence of myocardial infarction and stroke in men. Circulation 2002;105:2632–2637.

    Article  Google Scholar 

  26. Holovet P, Vanhaecke J, Janssens S, Werf FV, Collen D. Oxidised LDL and malondialdehyde modified LDL in patients with acute coronary syndromes and stable CAD. Circulation 1998;98:1487–1494.

    Google Scholar 

  27. Mendis S, Sobotka PA, Legna FL, Euler DE. Breath pentane and plasma lipid peroxides in ishaemic heart disease. Free Radic Biol Med 1995;19:679–684.

    Article  PubMed  CAS  Google Scholar 

  28. Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C, et al. Oxidative stress and homocysteine in coronary artery disease. Clin Chem 2001;47(5):887–892.

    PubMed  CAS  Google Scholar 

  29. Loeper J, Goy J, Rozensztajn L, Bedu O, Moisson P. Lipid peroxidation and protective enzymes during myocardial infarction. Clin Chim Acta 1991;196(2–3):119–126.

    Article  PubMed  CAS  Google Scholar 

  30. Tamer L, Sucu N, Polat G, Ercan B, Aytacoglu B, Yucebilgic G, et al. Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch Med Res 2002;33(3):257–260.

    Article  PubMed  CAS  Google Scholar 

  31. Handan AK, Nevbahar T, Habyf S, Dyngyloglo TN, Kultursay H, Bayinder O, et al. Plasma lipid peroxides, Vitamin E, Superoxide dismutase and glutathione alterations in coronary atherosclerosis. Turk Med Sci 1996;26:11–15.

    Google Scholar 

  32. Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, et al. Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol 1985;17:937–945

    Article  PubMed  CAS  Google Scholar 

  33. Landmesser Ulf, Merten R, Spiekermann S, Buttner K, Drexler H, Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease. Circulation 2000;101:2264–2279.

    PubMed  CAS  Google Scholar 

  34. Julicher R, Tijburg L, Sterrenberg L, Bast A, Koomen J, Noordhoek J. Decreased defense against free radicals in rat heart during normal reperfusion after hypoxic, ischemic and calcium-free perfusion. Life Sci 1984;35:1281–1288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderpreet Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, K., Bedi, G., Kaur, M. et al. Lipid peroxidation and the levels of antioxidant enzymes in coronary artery disease. Indian J Clin Biochem 23, 33–37 (2008). https://doi.org/10.1007/s12291-008-0008-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-008-0008-4

Key Words

Navigation