Skip to main content
Log in

Void closure during open die forging of large size martensitic stainless-steel ingots: an experimental-analytical-numerical study

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In the present research, void closure during the open die forging process of large size AISI410 martensitic stainless-steel ingots was studied using a combination of analytical modeling, finite element simulations, and experimental validations. The analytical model assumes that the voids during deformation can be represented by initially spherical geometry changing to ellipsoid or cracks before being completely closed. Finite element simulations of the open die forging were conducted using the Forge® NxT 3.1 software to simulate the stresses and strains predicted by the analytical model. Hot forging experiments were conducted on large size cylindrical samples at the center of which spherical voids simulating the presence of porosity, were machined. After hot forging, the closure levels of the voids were compared with those predicted by the model and very good agreement (discrepancy in the range of 7%) was observed. This showed that the model could be confidently used for prediction of the void closure in industrial open die forging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\({E}_{e}\) :

Effective strain

\({H}_{i}\) :

Industrial ingot height

\({H}_{e}\) :

Experimental sample height

\(m\) :

Strain rate sensibility coefficient

\(n\) :

Norton coefficient

\({q}_{1};{q}_{2};{q}_{3};{q}_{4}\) :

Constants in the model by Zhang et al. [35] for voids closure

\({S}_{f}\) :

Final void cross sectional area

\({S}_{i}\) :

Initial void cross sectional area

\({T}_{x}\) :

Stress triaxiality (the hydrostatic stress divided by the Von Mises stress)

\({V}_{f}\) :

Final void volume

\({V}_{i}\) :

Initial void volume

\({\dot{\varepsilon }}_{i}\) :

Strain rate

\({\sigma }_{i}\) :

Stress

\({\Phi }_{i}\) :

Industrial ingot diameter

\({\Phi }_{e}\) :

Experimental sample diameter

References

  1. Budiansky B, Hutchinson JW, Slutsky S (1982) Void growth and collapse in viscous solids. Mech Sol 13–45. https://doi.org/10.1016/B978-0-08-025443-2.50009-4

  2. Carroll JD, Brewer LN, Battaile CC, Boyce BL, Emery JM (2012) The effect of grain size on local deformation neara void-like stress concentration. Int J Plast 1(39):46–60. https://doi.org/10.1016/j.ijplas.2012.06.002

    Article  Google Scholar 

  3. Chbihi A, Bouchard PO, Bernacki M, Muñoz DP (2017) Influence of Lode angle on modelling of void closure in hot metal forming processes. Finite Elem Anal Des 126:13–25. https://doi.org/10.1016/j.finel.2016.11.008

    Article  Google Scholar 

  4. Dudra SP, Im YT (1990) Analysis of void closure in open-die forging. Int J Mach Tool Manu 30(1):65–75. https://doi.org/10.1016/0890-6955(90)90042-H

    Article  Google Scholar 

  5. Duva JM, Hutchinson JW (1984) Constitutive potentials for dilutely voided nonlinear materials. Mech Mater 3(1):41–54. https://doi.org/10.1016/0167-6636(84)90013-9

    Article  Google Scholar 

  6. Feng C, Cui Z, Liu M, Shang X, Sui D, Liu J (2016) Investigation on the void closure efficiency in cogging processes of the large ingot by using a 3-D void evolution model. J Mater Process Tech 237:371–385. https://doi.org/10.1016/j.jmatprotec.2016.06.030

    Article  Google Scholar 

  7. Fleck NA, Hutchinson J (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49(10):2245–2271. https://doi.org/10.1016/S0022-5096(01)00049-7

    Article  MATH  Google Scholar 

  8. Gao X, Kim J (2006) Modeling of ductile fracture: significance of void coalescence. Int J Solids Struct 43(20):6277–6293. https://doi.org/10.1016/j.ijsolstr.2005.08.008

    Article  MATH  Google Scholar 

  9. Gologanu M, Leblond JB, Devaux J (1994) Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41(11):1723–1754. https://doi.org/10.1016/0022-5096(93)90029-F

    Article  MATH  Google Scholar 

  10. Gravier P, Mas F, Barthelemy A, Boller E, Salvo L, Lhuissier P (2022) Mechanisms and kinetics of pore closure in thick aluminum plate. J Mater Process Technol 303:117499. https://doi.org/10.1016/j.jmatprotec.2022.117499

    Article  Google Scholar 

  11. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15. https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  12. Harris N (2016) Determination of optimal forging conditions for void elimination in large steel ingots. Master Dissertation, École de Technologie supérieure. https://espace.etsmtl.ca/id/eprint/1771

  13. Harris N, Shahriari D, Jahazi M (2016) Analysis of void closure during open die forging process of large size steel ingots. Key Eng Mater 716:579–585. https://doi.org/10.4028/www.scientific.net/KEM.716.579

    Article  Google Scholar 

  14. Hauri J, Graf M, Awiszus B, Kawalla R (2018) Closing of shrinkage cavities by means of open-die forging. Mater Sci Forum 918:77–84. https://doi.org/10.4028/www.scientific.net/MSF.918.77

    Article  Google Scholar 

  15. Hibbe P, Hirt G (2020) Analysis of the bond strength of voids closed by open-die forging. Int J Mater Form 13(1):117–126. https://doi.org/10.4028/www.scientific.net/MSF.918.77

    Article  Google Scholar 

  16. Kakimoto H, Arikawa T, Takahashi Y, Tanaka T, Imaida Y (2010) Development of forging process design to close internal voids. J Mater Process Technol 210(3):415–22. https://doi.org/10.1016/j.jmatprotec.2009.09.022

    Article  Google Scholar 

  17. Kukuryk M (2019) Experimental and FEM analysis of void closure in the hot cogging process of tool steel. Metals 9(5):538. https://doi.org/10.3390/met9050538

    Article  Google Scholar 

  18. Landes JD, McCabe DE, Boulet JA (1994) Fracture mechanics: twenty-fourth volume. In National Symposium on Fracture Mechanics, 24th, Gatlinburg, Tennessee, USA (No. 1207). https://www.worldcat.org/title/fracture-mechanics-twenty-fourth-volume/oclc/32296916

  19. Lu XZ, Chan LC (2018) Micro-voids quantification for damage prediction in warm forging of biocompatible alloys using 3D X-ray CT and RVE approach. J Mater Process Technol 258:116–127. https://doi.org/10.1016/j.jmatprotec.2018.03.020

    Article  Google Scholar 

  20. Monchiet V, Cazacu O, Charkaluk E, Kondo D (2008) Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int J Plast 24(7):1158–1189. https://doi.org/10.1016/j.ijplas.2007.08.008

    Article  MATH  Google Scholar 

  21. Needleman A, Tvergaard VF (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32(6):461–490. https://doi.org/10.1016/0022-5096(84)90031-0

    Article  Google Scholar 

  22. Niordson CF (2008) Void growth to coalescence in a non-local material. Eur J Mech A-Solid 27(2):222–233. https://doi.org/10.1016/j.euromechsol.2007.07.001

    Article  MATH  Google Scholar 

  23. Niu L, Zhang Q (2022) A void closure model based on hydrostatic integration and the Lode parameter for additive manufacturing AlSi10Mg. J Manu Process 73:235–247. https://doi.org/10.1016/j.jmapro.2021.10.056

    Article  Google Scholar 

  24. Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48(12):2467–512. https://doi.org/10.1016/S0022-5096(00)00019-3

    Article  MATH  Google Scholar 

  25. Ragab AR (2004) Application of an extended void growth model with strain hardening and void shape evolution to ductile fracture under axisymmetric tension. Eng Fract Mech 71(11):1515–1534. https://doi.org/10.1016/S0013-7944(03)00216-9

    Article  Google Scholar 

  26. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17(3):201–217. https://doi.org/10.1016/0022-5096(69)90033-7

    Article  Google Scholar 

  27. Saby M (2013) Understanding and modeling of void closure mechanisms in hot metal forming processes. (Thesis dissertation, École Nationale Supérieure des Mines de Paris). https://pastel.archives-ouvertes.fr/pastel-00979301

  28. Saby M, Bouchard PO, Bernacki M (2015) A geometry-dependent model for void closure in hot metal forming. Finite Elem Anal Des 105:63–78. https://doi.org/10.1016/j.finel.2015.07.003

    Article  Google Scholar 

  29. Sun L, Liao R (2015) Mechanical analysis of RuT300 steel by using modified 3D RVE model. Advances in future manufacturing engineering, 1st edn, CRC Press

  30. Szelążek J, Mackiewicz S, Kowalewski ZL (2009) New samples with artificial voids for ultrasonic investigation of material damage due to creep. NDT&E Int 42(2):150–156. https://doi.org/10.1016/j.ndteint.2008.11.004

    Article  Google Scholar 

  31. Tkadlečková M, Michalek K, Gryc K, Smetana B, Machovčák P, Socha L (2013) The effect of boundary conditions of casting on the size of porosity of heavy steel ingot. J Ach Mater Manuf Eng 56(1):29–37. http://jamme.acmsse.h2.pl/papers_vol56_1/5614.pdf

  32. Tvergaard V (1989) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151. https://doi.org/10.1016/S0065-2156(08)70195-9

    Article  MATH  Google Scholar 

  33. Wang J, Fu P, Liu H, Li D, Li Y (2012) Shrinkage porosity criteria and optimized design of a 100-ton 30Cr2Ni4MoV forging ingot. Mater Design 35:446–456. https://doi.org/10.1016/j.matdes.2011.09.056

    Article  Google Scholar 

  34. Zapara M, Tutyshkin N, Müller WH (2013) Growth and closure of voids in metals at negative stress triaxialities. Key Eng Mater 554:1125–1132. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1125

    Article  Google Scholar 

  35. Zhang XX, Cui ZS, Chen W, Li Y (2009) A criterion for void closure in large ingots during hot forging. J Mater Process Technol 209(4):1950–1959. https://doi.org/10.1016/j.jmatprotec.2008.04.051

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Finkl Steel-Sorel for funding this research study and supplying materials through Mitacs Grant No. IT16470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Sadeghifar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geisler, A., Sadeghifar, M., Morin, JB. et al. Void closure during open die forging of large size martensitic stainless-steel ingots: an experimental-analytical-numerical study. Int J Mater Form 16, 11 (2023). https://doi.org/10.1007/s12289-022-01735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01735-y

Keyword

Navigation