Skip to main content
Log in

Residual stresses and deformations of laser additive manufactured metal parts: a review

  • Review
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Laser additive manufacturing (LAM) technology is based on three-dimensional digital models, using laser as an energy source to melt metal materials layer by layer to form target parts. LAM technology can produce metal parts with complex structures, but the residual stress generated during the LAM process causes deformation. Therefore, in order to facilitate wide application of LAM parts in industry, it is of great significance to improve the dimensional accuracy and reduce the deformation of the LAM parts. This paper summarizes the factors affecting the residual stress and deformation of LAM parts, introduces the methods commonly used to detect the residual stress and deformation of LAM parts, and compares their applications, advantages and disadvantages, expounds five methods for predicting the deformation of LAM parts, introduces the deformation compensation method based on the reverse compensation principle, and puts forward the deformation detection method that may be employed to LAM parts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nandy J, Sarangi H, Sahoo S (2019) A Review on Direct Metal Laser Sintering: Process Features and Microstructure Modeling. Lasers Manuf Mater Process 6:280–316. https://doi.org/10.1007/s40516-019-00094-y

    Article  Google Scholar 

  2. Plotkowski A, Rios O, Sridharan N, Sims Z, Unocic K, Ott R, Dehoff R, Babu SS (2017) Evaluation of an Al-Ce alloy for laser additive manufacturing. Acta Mater 126:507–519. https://doi.org/10.1016/j.actamat.2016.12.065

    Article  Google Scholar 

  3. Wen P, Voshage M, Jauer L, Chen Y, Qin Y, Poprawe R, Schleifenbaum JH (2018) Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties. Mater Des 155:36–45. https://doi.org/10.1016/j.matdes.2018.05.057

    Article  Google Scholar 

  4. Yang Y, Lu C, Peng S, Shen L, Wang D, Qi F, Shuai C (2020) Laser additive manufacturing of Mg-based composite with improved degradation behaviour. Virtual Phys Prototyping 15:278–293. https://doi.org/10.1080/17452759.2020.1748381

    Article  Google Scholar 

  5. Bremen S, Meiners W, Diatlov A (2012) Selective Laser Melting: a Manufacturing Technology for the Future. Laser Tech J 9:33–38. https://doi.org/10.1002/latj.201290018

    Article  Google Scholar 

  6. Gibson I, Rosen D, Stucker B (2015) Directed energy deposition processes. In: Additive manufacturing technologies, 2nd edn. Springer, New York, pp 245–268. https://doi.org/10.1007/978-1-4939-2113-3_10

  7. Safronov VA, Khmyrov RS, Kotoban DV, Gusarov AV (2017) Distortions and Residual Stresses at Layer-by-Layer Additive Manufacturing by Fusion. J Manuf Sci Eng 139:031017. https://doi.org/10.1115/1.4034714

    Article  Google Scholar 

  8. Bambach M, Sizova I, Szyndler J, Bennett J, Hyatt G, Cao J, Papke T, Merklein M (2020) On the hot deformation behavior of Ti-6Al-4V made by additive manufacturing. J Mater Process Technol 288:116840. https://doi.org/10.1016/j.jmatprotec.2020.116840

    Article  Google Scholar 

  9. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal 12:254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  10. Van Zyl I, Yadroitsava I, Yadroitsev I (2015) Residual stresses in direct metal laser sintered parts. Interim Interdiscip J 14:110–123

  11. Kayacan MY, Özsoy K, Duman B, Yilmaz N, Kayacan MC (2019) A study on elimination of failures resulting from layering and internal stresses in Powder Bed Fusion (PBF) additive manufacturing. Mater Manuf Processes 34:1467–1475. https://doi.org/10.1080/10426914.2019.1655151

    Article  Google Scholar 

  12. Paul R, Anand S, Gerner F (2014) Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes. J Manuf Sci Eng 136:031009. https://doi.org/10.1115/1.4026524

    Article  Google Scholar 

  13. Saphronov V, Khmyrov RS, Gusarov AV (2015) Experimental and theoretical study of residual deformations and stresses at additive manufacturing by fusion. ResearchGate. https://www.researchgate.net/publication/349339894. Accessed 16 Feb 2021

  14. Mugwagwa L, Dimitrov D, Matope S, Muvunzi R (2016) Residual stresses and distortions in selective laser melting-a review. ResearchGate. https://www.researchgate.net/publication/318014975. Accessed 25 June 2019

  15. Fang ZC, Wu ZL, Huang CG, Wu CW (2020) Review on residual stress in selective laser melting additive manufacturing of alloy parts. Opt Laser Technol 129:106283. https://doi.org/10.1016/j.optlastec.2020.106283

    Article  Google Scholar 

  16. Ali H, Ghadbeigi H, Mumtaz K (2018) Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V. J Mater Eng Perform 27:4059–4068. https://doi.org/10.1007/s11665-018-3477-5

    Article  Google Scholar 

  17. Mugwagwa L, Dimitrov D, Matope S, Yadroitsev I (2018) Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf 21:92–99. https://doi.org/10.1016/j.promfg.2018.02.099

    Article  Google Scholar 

  18. Jiang X, Ye Y, Zhu Y (2020) Effect of process parameters on residual stress in selective laser melting of AlSi10Mg. Mater Sci Techno 36:342–352. https://doi.org/10.1080/02670836.2019.1705560

    Article  Google Scholar 

  19. Malý M, Höller C, Skalon M, Meier B, Koutný D, Pichler R, Sommitsch C, Paloušek D (2019) Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting. Materials 12:930. https://doi.org/10.3390/ma12060930

    Article  Google Scholar 

  20. Levkulich NC, Semiatin SL, Gockel JE, Middendorf JR, DeWald AT, Klingbeil NW (2019) The Effect of Process Parameters on Residual Stress Evolution and Distortion in the Laser Powder Bed Fusion of Ti-6Al-4V. Addit Manuf 28:475–484. https://doi.org/10.1016/j.addma.2019.05.015

    Article  Google Scholar 

  21. Xiao Z, Chen C, Zhu H, Hu Z, Nagarajan B, Guo L, Zeng X (2020) Study of residual stress in selective laser melting of Ti6Al4V. Mater Des 193:108846. https://doi.org/10.1016/j.matdes.2020.108846

    Article  Google Scholar 

  22. Cheng B, Shrestha S, Chou K (2016) Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit Manuf 12:240–251. https://doi.org/10.1016/j.addma.2016.05.007

    Article  Google Scholar 

  23. Ali H, Ghadbeigi H, Mumtaz K (2018) Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater Sci Eng 712:175–187. https://doi.org/10.1016/j.msea.2017.11.103

    Article  Google Scholar 

  24. Song J, Wu WH, Zhang L, He BB, Lu L, Ni XQ, Long QL, Zhu GL (2018) Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik 170:342–352. https://doi.org/10.1016/j.ijleo.2018.05.128

    Article  Google Scholar 

  25. Wang D, Wu SB, Yang YQ, Dou WH, Deng SS, Wang Z, Li S (2018) The Effect of a Scanning Strategy on the Residual Stress of 316L Steel Parts Fabricated by Selective Laser Melting (SLM). Materials 11:1821. https://doi.org/10.3390/ma11101821

    Article  Google Scholar 

  26. Mugwagwa L, Dimitrov D, Matope S, Yadroitsev I (2019) Evaluation of the impact of scanning strategies on residual stresses in selective laser melting. Int J Adv Manuf Technol 102:2441–2450. https://doi.org/10.1007/s00170-019-03396-9

    Article  Google Scholar 

  27. Guo J, Haiyang FU, Pan B, Kang R (2021) Recent Progress of Residual Stress Measurement Methods: A Review. Chin J Aeronaut 34:54–78. https://doi.org/10.1016/j.cja.2019.10.010

    Article  Google Scholar 

  28. Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Addit Manuf 5:9–19. https://doi.org/10.1016/j.addma.2014.10.003

    Article  Google Scholar 

  29. Prime MB, Dewald AT (2013) The contour method. In: Practical residual stress measurement methods, 1st edn. Wiley, New York, pp 109–138. https://doi.org/10.1002/9781118402832.ch5

  30. Vrancken B, Cain V, Knutsen R, Humbeeck JV (2014) Residual stress via the contour method in compact tension specimens produced via selective laser melting. Scr Mater 87:29–32. https://doi.org/10.1016/j.scriptamat.2014.05.016

    Article  Google Scholar 

  31. Ahmad B, Veen SOD, Fitzpatrick ME, Guo H (2018) Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation. Addit Manuf 22:571–582. https://doi.org/10.1016/j.addma.2018.06.002

    Article  Google Scholar 

  32. Prevéy PS (1986) X-ray diffraction residual stress techniques. Metals Handbook, American Society for Metals, OH, pp 380-392

  33. Lin J, Ma N, Lei Y, Murakawa H (2017) Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method. J Mater Process Technol 243:387–394. https://doi.org/10.1016/j.jmatprotec.2016.12.021

  34. Prevéy PS (1996) Current applications of X-ray diffraction residual stress measurement. Developments in materials characterization technologies, OH, pp 103–110

  35. Fitzpatrick ME, Fry AT, Holdway P, Kandil FA, Shackleton J, Suominen L (2005) Determination of residual stresses by X-ray diffraction - Issue 2. National Physical Laboratory. http://eprintspublications.npl.co.uk/id/eprint/2391. Accessed 02 Feb 2018

  36. Simson T, Emmela A, Dwars A, Böhm J (2017) Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit Manuf 17:183–189. https://doi.org/10.1016/j.addma.2017.07.007

    Article  Google Scholar 

  37. Kumaran M, Lkumar VS, Panicker CTJ, Shishir R (2021) Investigating the residual stress in additive manufacturing of combined process in powder bed fusion and directed energy deposition. Mater Today Proc 47:4387-4390.https://doi.org/10.1016/j.matpr.2021.05.200

  38. Park MJ, Yang HN, Jang DY, Kim JS, Jin TE (2004) Residual stress measurement on welded specimen by neutron diffraction. J Mater Process Techno 155–156:1171–1177. https://doi.org/10.1016/j.jmatprotec.2004.04.393

    Article  Google Scholar 

  39. Rangaswamy P, Griffith ML, Prime MB, Holden TM, Rogge RB, Edwards JM, Sebring RJ (2005) Residual stresses in LENS components using neutron diffraction and contour method. Mater Sci Eng A 399:72–83. https://doi.org/10.1016/j.msea.2005.02.019

    Article  Google Scholar 

  40. Paradowska A, Price JWH, Ibrahim R, Finlayson T (2005) A neutron diffraction study of residual stress due to welding. J Mater Process Technol 164–165:1099–1105. https://doi.org/10.1016/j.jmatprotec.2005.02.092

    Article  Google Scholar 

  41. Wang Z, Denlinger E, Michaleris P, Stoica AD, Ma D, Beese AM (2017) Residual stress mapping in Inconel 625 fabricated through additive manufacturing: Method for neutron diffraction measurements to validate thermomechanical model predictions. Mater Des 113:169–177. https://doi.org/10.1016/j.matdes.2016.10.003

    Article  Google Scholar 

  42. Wang ZQ, Stoica AD, Ma D, Beese AM (2017) Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: Application to additive manufacturing. Mater Sci Eng A 707:585–592. https://doi.org/10.1016/j.msea.2017.09.071

    Article  Google Scholar 

  43. Kemerling B, Lippold JC, Fancher CM, Bunn J (2018) Residual stress evaluation of components produced via direct metal laser sintering. Weld World 62:663–674. https://doi.org/10.1007/s40194-018-0572-z

    Article  Google Scholar 

  44. Wozniak A, Dobosz M (2005) Factors influencing probing accuracy of a coordinate measuring machine. IEEE Trans Instrum Meas 54:2540–2548. https://doi.org/10.1109/TIM.2005.858541

    Article  Google Scholar 

  45. Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental Validation of Finite Element Modeling for Laser Powder Bed Fusion Deformation. Addit Manuf 12:108–120. https://doi.org/10.1016/j.addma.2016.08.003

    Article  Google Scholar 

  46. Ning JQ, Praniewicz M, Wang WJ, Dobbs JR, Liang SY (2020) Analytical modeling of part distortion in metal additive manufacturing. Int J Adv Manuf Technol 107:49–57. https://doi.org/10.1007/s00170-020-05065-8

    Article  Google Scholar 

  47. Sun WJ, Brown S, Leach R (2012) An overview of industrial X-ray computed tomography. National Physical Laboratory. http://eprintspublications.npl.co.uk/id/eprint/5385. Accessed 02 Feb 2018

  48. Thompson A, Maskery I, Leach RK (2016) X-ray computed tomography for additive manufacturing: a review. Meas Sci Technol 27:072001

    Article  Google Scholar 

  49. Samei J, Amirmaleki M, Ventura AP, Pawlikowski GT, Bayes M, Misiolek WZ, Wilkinson DS (2020) In-situ X-ray Tomography Analysis of the Evolution of Pores during Deformation of a Cu-Sn Alloy Fabricated by Selective Laser Melting. Addit Manuf 34:101196. https://doi.org/10.1016/j.addma.2020.101196

    Article  Google Scholar 

  50. Choo H, White LP, Xiao XH, Sluss CC, Morin D, Garlea C (2021) Deformation and fracture behavior of a laser powder bed fusion processed stainless steel: In situ synchrotron x-ray computed microtomography study. Addit Manuf 40:101914. https://doi.org/10.1016/j.addma.2021.101914

    Article  Google Scholar 

  51. Song HX, Wang XD, Ma LQ, Cai MZ, Cao TZ (2006) Design and performance analysis of laser displacement sensor based on position sensitive detector (PSD). J Phys Conf Ser 48:040. https://doi.org/10.1088/1742-6596/48/1/040

  52. Sun JH, Zhang J, Liu Z, Zhang GJ (2013) A vision measurement model of laser displacement sensor and its calibration method. Opt Lasers Eng 51:1344–1352. https://doi.org/10.1016/j.optlaseng.2013.05.009

    Article  Google Scholar 

  53. Denlinger ER, Heigel JC, Michaleris P, Palmer TA (2015) Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J Mater Process Techno 215:123–131. https://doi.org/10.1016/j.jmatprotec.2014.07.030

    Article  Google Scholar 

  54. Corbin DJ, Nassarc AR, Reutzelc EW, Kistlerb NA, Beeseb AM, Michalerisa P (2016) Impact of directed energy deposition parameters on mechanical distortion of laser deposited Ti-6Al-4V. In: 2016 International Solid Freeform Fabrication Symposium. Austin, Texas, pp 670–679

  55. McCormick N, Lord J (2010) Digital image correlation. Mater Today 13:52–54. https://doi.org/10.1016/S1369-7021(10)70235-2

  56. Pan B (2011) Recent Progress in Digital Image Correlation. Exp Mech 51:1223–1235. https://doi.org/10.1007/s11340-010-9418-3

  57. Biegler M, Marko A, Graf B, Rethmeier M (2018) Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry. Addit Manuf 24:264–272. https://doi.org/10.1016/j.addma.2018.10.006

    Article  Google Scholar 

  58. Balit Y, Charkaluk E, Constantinescu A (2020) Digital image correlation for microstructural analysis of deformation pattern in additively manufactured 316L thin walls. Addit Manuf 31:100862. https://doi.org/10.1016/j.addma.2019.100862

    Article  Google Scholar 

  59. Wu MW, Chen JK, Chiang PH, Chang PM, Tsai MK (2020) Compression Property, Deformation Behavior, and Fracture Mechanism of Additive-Manufactured Ti-6Al-4V Cellular Solid with a New Cuboctahedron Structure. Metall Mater Trans A 51:6517–6527. https://doi.org/10.1007/s11661-020-06013-7

    Article  Google Scholar 

  60. Zhao X, Iyer A, Promoppatum P, Yao S (2017) Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit Manuf 14:126–136. https://doi.org/10.1016/j.addma.2016.10.005

    Article  Google Scholar 

  61. Yang YP, Jamshidinia M, Boulware P, Kelly SM (2017) Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput Mech 61:599–615. https://doi.org/10.1007/s00466-017-1528-7

    Article  MATH  Google Scholar 

  62. Zhang Y, Zhang J (2017) Finite Element Simulation and Experimental Validation of Distortion and Cracking Failure Phenomena in Direct Metal Laser Sintering Fabricated Component. Addit Manuf 16:49–57. https://doi.org/10.1016/j.addma.2017.05.002

  63. Nazami GR, Pandab BK, Sahoo S (2021) Finite element simulation of residual stress in direct metal laser sintering of AlSi10Mg built part: Effect of laser spot overlapping. Mater Today Proc 41:445–450. https://doi.org/10.1016/j.matpr.2020.09.844

    Article  Google Scholar 

  64. Mukherjee T, Zhang W, Debroy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372. https://doi.org/10.1016/j.commatsci.2016.10.003

    Article  Google Scholar 

  65. Li C, Fu CH, Guo YB, Fang FZ (2016) A Multiscale Modeling Approach for Fast Prediction of Part Distortion in Selective Laser Melting. J Mater Process Technol 229:703–712. https://doi.org/10.1016/j.jmatprotec.2015.10.022

    Article  Google Scholar 

  66. Li C, Liu JF, Guo YB (2016) Prediction of Residual Stress and Part Distortion in Selective Laser Melting. Procedia Cirp 45:171–174. https://doi.org/10.1016/j.procir.2016.02.058

    Article  Google Scholar 

  67. Li C, Liu JF, Fang XY, Guo YB (2017) Efficient predictive model of part distortion and residual stress in selective laser melting. Addit Manuf 17:157–168. https://doi.org/10.1016/j.addma.2017.08.014

    Article  Google Scholar 

  68. Liang X, Chen Q, Cheng L, Yang QC, To A (2017) A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts. In: 2017 Solid Freeform Fabrication Symposium Proceedings. Austin, Texas, pp 2539–2545. https://doi.org/10.26153/tsw/16972

  69. Chen Q, Liang X, Haydukeb D, Liua J, Cheng L, Oskinaet J, Whitmoreb R, To A (2019) An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering. Addit Manuf 28:406–418. https://doi.org/10.1016/j.addma.2019.05.021

    Article  Google Scholar 

  70. Liang X, Chen Q, Cheng L, Hayduke D, To AC (2019) Modified inherent strain method for efficient prediction of residual deformation in direct metal laser sintered components. Comput Mech 64:1719–1733. https://doi.org/10.1007/s00466-019-01748-6

    Article  MATH  Google Scholar 

  71. Lianga X, Donga W, Hinnebuscha S, Chen Q, Tran HT, Lemon J, Cheng L, Zhou Z, Hayduke D, To AC (2020) Inherent strain homogenization for fast residual deformation simulation of thin-walled lattice support structures built by laser powder bed fusion additive manufacturing. Addit Manuf 32:101091. https://doi.org/10.1016/j.addma.2020.101091

    Article  Google Scholar 

  72. Lyu DD, Hu W, Pan XF, Wu CT (2020) Numerical Prediction of Residual Deformation and Failure for Powder Bed Fusion Additive Manufacturing of Metal Parts. J Mech 36:1–14. https://doi.org/10.1017/jmech.2020.30

    Article  Google Scholar 

  73. Setien I, Chiumenti M, van der Veen S, Sebastian MS, Garciandía F, Echeverría A (2019) Empirical methodology to determine inherent strains in additive manufacturing. Comput Math Appl 78:2282–2295. https://doi.org/10.1016/j.camwa.2018.05.015

    Article  MATH  Google Scholar 

  74. Ha K, Kim T, Baek GY, Jeon JB, Shim DS, Moon YH, Lee W (2020) Numerical study of the effect of progressive solidification on residual stress in single-bead-on-plate additive manufacturing. Addit Manuf 34:101245. https://doi.org/10.1016/j.addma.2020.101245

    Article  Google Scholar 

  75. Ghnatios C, Rai KE, Hascoet N, Pires PA, Duval JL, Lambarri J, Hascoet JY, Chinesta F (2021) Reduced order modeling of selective laser melting: from calibration to parametric part distortion. Int J Mater Form 14:973–986. https://doi.org/10.1007/s12289-021-01613-z

    Article  Google Scholar 

  76. Francis J, Bian L (2019) Deep learning for distortion prediction in laser-based additive manufacturing using big data. Manuf Lett 20:10–14. https://doi.org/10.1016/j.mfglet.2019.02.001

    Article  Google Scholar 

  77. Zhu Z, Ferreira K, Anwer N, Mathieu L, Guo K, Qiao L (2020) Convolutional Neural Network for geometric deviation prediction in Additive Manufacturing. Procedia Cirp 91:534–539. https://doi.org/10.1016/j.procir.2020.03.108

    Article  Google Scholar 

  78. Mehrpouya M, Gisario A, Nematollahi M, Rahimzadeh A, Baghbaderani KS, Elahinia M (2021) The prediction model for additively manufacturing of NiTiHf high-temperature shape memory alloy. Mater Today Commun 26:102022. https://doi.org/10.1016/j.mtcomm.2021.102022

    Article  Google Scholar 

  79. Kallioras NA, Nordas AN, Lagaros ND (2021) Deep Learning-Based Accuracy Upgrade of Reduced Order Models in Topology Optimization. Appl Sci 11:12005. https://doi.org/10.3390/app112412005

    Article  Google Scholar 

  80. Lu Y, Li H, Saha S, Mojumder S, Al Amin A, Suarez D, Liu Y, Qian D, Kam Liu W (2021) Reduced Order Machine Learning Finite Element Methods: Concept, Implementation, and Future Applications. Comput Model Eng Sci 129:1351–1371. https://doi.org/10.32604/cmes.2021.017719

  81. Biegler M, Elsner BAM, Graf B, Rethmeier M (2020) Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing. Sci Technol Weld Joining 25:468–475. https://doi.org/10.1080/13621718.2020.1743927

    Article  Google Scholar 

  82. Babkin K, Zemlyakovab E, Ivanov S, Vildanov A, Topalova I, Turichin G (2020) Distortion prediction and compensation in direct laser deposition of large axisymmetric Ti-6Al-4V part. Procedia CIRP 94:357–361. https://doi.org/10.1016/j.procir.2020.09.145

    Article  Google Scholar 

  83. Zhang B, Li L, Anand S (2020) Distortion Prediction and NURBS Based Geometry Compensation for Reducing Part Errors in Additive Manufacturing. Procedia Manuf 48:706–717. https://doi.org/10.1016/j.promfg.2020.05.103

    Article  Google Scholar 

  84. Afazov S, Okioga A, Holloway A, Denmark W, Triantaphyllou A, Smith S (2017) A methodology for precision additive manufacturing through compensation. Precis Eng 50:269–274

    Article  Google Scholar 

  85. Afazov S, Semerdzhieva E, Scrimieri D, Serjouei A, Derguti F (2021) An improved distortion compensation approach for additive manufacturing using optically scanned data. Virtual Phys Prototyping 16:1–13. https://doi.org/10.1080/17452759.2021.1881702

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC2801904) and the Central Guidance on Local Science and Technology Development Fund of Liaoning Province (Grant No. 2022JH6/100100041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo He.

Ethics declarations

Conflict of interest/Competing interest

The authors declare that they have no conflict of interest nor competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Bi, C., Li, X. et al. Residual stresses and deformations of laser additive manufactured metal parts: a review. Int J Mater Form 16, 7 (2023). https://doi.org/10.1007/s12289-022-01729-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01729-w

Keywords

Navigation