Skip to main content

Advertisement

Log in

Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. CIRP Annals Technol 61:725–745. https://doi.org/10.1016/j.cirp.2012.05.007

    Article  Google Scholar 

  2. Merklein M, Gröbel D, Löffler M, Schneider T, Hildenbrand P (2015) Sheet-bulk metal forming – forming of functional components from sheet metals. MATEC Web of Conf 21:01001. https://doi.org/10.1051/matecconf/20152101001

    Article  Google Scholar 

  3. Merklein M, Hagenah H (2016) Introduction to sheet-bulk metal forming. Prod Eng-Res Dev 10:1–3. https://doi.org/10.1007/s11740-016-0661-z

    Article  Google Scholar 

  4. Zhu SF, Zhuang XC, Zhu Y, Zhao Z (2018) Thickening of cup sidewall through sheet-bulk forming with controllable deformation zone. J Mater Process Technol 262:597–604. https://doi.org/10.1016/j.jmatprotec.2018.07.036

    Article  Google Scholar 

  5. Merklein M, Koch J, Opel S, Schneider T (2011) Fundamental investigations on the material flow at combined sheet and bulk metal forming processes. CIRP Ann-Manuf Technol 60:283–286. https://doi.org/10.1016/j.cirp.2011.03.146

    Article  Google Scholar 

  6. Gröbel D, Koch J, Vierzigmann HU, Engel U, Merklein M (2014) Investigations and approaches on material flow of non-uniform arranged cavities in sheet bulk metal forming processes. Procedia Eng 81:401–406. https://doi.org/10.1016/j.proeng.2014.10.013

    Article  Google Scholar 

  7. Chen ZH, Tang CY, Chan LC, Lee TC (1999) Simulation of the sheet metal extrusion process by the enhanced assumed strain finite element method. J Mater Process Technol 91:250–256. https://doi.org/10.1016/S0924-0136(98)00419-1

    Article  Google Scholar 

  8. Zhuang XC, Xiang H, Zhao Z (2010) Analysis of sheet metal extrusion process using finite element method. Int J Autom Comput 7:295–302. https://doi.org/10.1007/s11633-010-0506-8

    Article  Google Scholar 

  9. Xu Z, Peng L, Bao E (2018) Size effect affected springback in micro/meso scale bending process: Experiments and numerical modeling. J Mater Process Technol 252:407–420. https://doi.org/10.1016/j.jmatprotec.2017.08.040

    Article  Google Scholar 

  10. Deng YJ, Peng LF, Lai XM, Fu MW, Lin ZQ (2017) Constitutive modeling of size effect on deformation behaviors of amorphous polymers in micro-scaled deformation. Int J Plast 89:197–222. https://doi.org/10.1016/j.ijplas.2016.11.011

    Article  Google Scholar 

  11. Schubert A, Jahn SF, Müller B (2014) Evaluation of tribological properties of AlMg4.5Mn0.7 in massive microforming using the barrel compression test. Key Eng Mater 611–612:597–605. https://doi.org/10.4028/www.scientific.net/KEM.611-612.597

    Article  Google Scholar 

  12. Barbier C, Thibaud S, Picart P (2008) Size effects on material behaviour in microforming. Int J Mater Form 1:439–442. https://doi.org/10.1007/s12289-008-0

    Article  Google Scholar 

  13. Nam JS, Lee SW, Kim HS (2014) Investigations into the size effect on plastic deformation behavior of metallic materials in microcoining process. Int J Precis Eng Manuf 15:5–11. https://doi.org/10.1007/s12541-013-0300-y

    Article  Google Scholar 

  14. Jeswiet J, Geiger M, Engel U, Kleiner M, Schikorra M, Duflou J, Neugebauer R, Bariani P, Bruschi S (2008) Metal forming progress since 2000. CIRP J Manuf Sci Technol 1:2–17. https://doi.org/10.1016/j.cirpj.2008.06.005

    Article  Google Scholar 

  15. Lee EH, Wolf H (1951) Plastic-wave propagation effects in high-speed testing. J Appl Mech 18(4):379–386. https://doi.org/10.1115/1.4010354

    Article  Google Scholar 

  16. Mynors DJ, Zhang B (2002) Applications and capabilities of explosive forming. J Mater Process Technol 125–126:1–25. https://doi.org/10.1016/S0924-0136(02)00413-2

    Article  Google Scholar 

  17. Kleiner M, Brosius A (2006) Determination of flow curves at high strain rates using the electromagnetic forming process and an iterative finite element simulation scheme. CIRP Ann-Manuf Technol 55:267–270. https://doi.org/10.1016/s0007-8506(07)60413-2

    Article  Google Scholar 

  18. Mynors DJ, Zhang B (2022) Applications and capabilities of explosive forming. J Mater Process Technol 125:1–25. https://doi.org/10.1016/S0924-0136(02)00413-2

    Article  Google Scholar 

  19. Cao Q, Lai Z, Xiong Q, Chen Q, Li L (2016) Electromagnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation. Int J Adv Manuf Tech 90:309–316. https://doi.org/10.1007/s00170-016-9329-2

    Article  Google Scholar 

  20. Qiu L, Yu Y, Wang Z, Yang Y, Pan S (2018) Analysis of electromagnetic force and deformation behavior in electromagnetic forming with different coil systems. Int J Appl Electrom 57:337–345. https://doi.org/10.3233/JAE-170163

    Article  Google Scholar 

  21. Kuhfuss B, Schenck C, Wilhelmi P, Langstädtler L (2014) Electromagnetic linked micro part processing. Procedia Eng 81:2135–2140. https://doi.org/10.1016/j.proeng.2014.10.298

    Article  Google Scholar 

  22. Zhou M, Zhang YK, Cai L (2002) Laser shock forming on coated metal sheets characterized by ultrahigh-strain-rate plastic deformation. J Appl Phys 91(8):5501–5503. https://doi.org/10.1063/1.1459624

    Article  Google Scholar 

  23. Vollertsen F, Niehoff HS, Wielage H (2009) On the acting pressure in laser deep drawing. Prod Eng Res Dev 3(1):1–8. https://doi.org/10.1007/s11740-008-0135-z

    Article  Google Scholar 

  24. Cheng GJ, Pirzada D, Zhou M (2007) Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming. J Appl Phys 101(6):345–360. https://doi.org/10.1063/1.2710334

    Article  Google Scholar 

  25. Liu HX, Shen ZB, Wang X, Li P, Hu Y, Gu CX (2012) Feasibility investigations on a novel micro-embossing using laser-driven flyer. Opt Laser Technol 44(6):1987–1991. https://doi.org/10.1016/j.optlastec.2012.02.010

    Article  Google Scholar 

  26. Wang KY, Liu HX, Ma YJ, Lu JZ, Wang X, Lu JX, Gu X, Zhang HK (2021) Laser shock micro-bulk forming: Numerical simulation and experimental research. J Manuf Processes 64:1273–1286. https://doi.org/10.1016/j.jmapro.2021.02.049

    Article  Google Scholar 

  27. Gong QF, Wang X, Zhang T, Hou X, Shen ZB, Liu HX (2021) Warm laser shock micro-heading forming (T2 copper): numerical simulation and experimental research. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08334-2

    Article  Google Scholar 

  28. Zhang DN, Shangguan QQ, Xie CJ, Liu F (2015) A modified Johnson-Cook model of dynamic tensile behaviors for 7075–T6 aluminum alloy. J Alloys Compd 619(15):186–194. https://doi.org/10.1016/j.jallcom.2014.09.002

    Article  Google Scholar 

  29. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Meth Appl Mech Eng 29(3):329–349. https://doi.org/10.1016/0045-7825(81)90049-9

    Article  MATH  Google Scholar 

  30. Assadi H, Gärtner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51(15):4379–4394. https://doi.org/10.1016/s1359-6454(03)00274-x

    Article  Google Scholar 

  31. Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) Physical study of laser-produced plasma in confined geometry. J Appl Phys 68(2):775–784. https://doi.org/10.1063/1.346783

    Article  Google Scholar 

  32. Zheng C, Sun S, Ji Z, Wang W, Liu J (2010) Numerical simulation and experimentation of micro scale laser bulge forming. Int J Mach Tool Manu 50:1048–1056. https://doi.org/10.1016/j.ijmachtools.2010.08.012

    Article  Google Scholar 

  33. Liu HX, Gong JX, Ma YJ, Cui J, Wang X (2020) Investigation of novel laser shock hydroforming method on micro tube bulging. Opt Laser Eng 129:106073. https://doi.org/10.1016/j.optlaseng.2020.106073

    Article  Google Scholar 

  34. Peyre P, Fabbro R (1995) Laser shock processing: a review of the physics and applications. Opt Quantum Electron 27(12):1213–1229. https://doi.org/10.1007/BF00326477

    Article  Google Scholar 

  35. Zhu WH, Yu TX, Li ZY (2000) Laser-induced shock waves in PMMA confined foils. Int J Impact Eng 24:641–657. https://doi.org/10.1016/S0734-743X(00)00002-6

    Article  Google Scholar 

  36. Wang CJ, Guo B, Shan DB (2011) Polycrystalline model for FE-simulation of micro forming processes. Trans Nonferrous Met Soc China 21(6):1362–1366. https://doi.org/10.1016/s1003-6326(11)60866-2

    Article  Google Scholar 

  37. Zheng C, Tian Z, Zhao X, Tan Y, Zhang G, Zhao G, Ji Z (2020) Effect of pulsed laser parameters on deformation inhomogeneity in laser shock incremental forming of pure copper foil. Opt Laser Technol 127:106205. https://doi.org/10.1016/j.optlastec.2020.106205

    Article  Google Scholar 

  38. Wang ZJ, Cheng LD (2008) Effect of material parameters on stress wave propagation during fast upsetting. Trans Nonferrous Met Soc China 18(5):1189–1195. https://doi.org/10.1016/S1003-6326(08)60203-4

    Article  Google Scholar 

  39. Cheng LD (2009) Numerical simulation investigation of high speed bulk forming process, Harbin Institute of Technology (People's Republic of China), Ann Arbor

  40. Clifton RJ (1985) Stress wave experiments in plasticity. Int J Plast 1(4):289–302. https://doi.org/10.1016/0749-6419(85)90016-6

    Article  Google Scholar 

  41. Gong YJ, Zhang G (1990) Factors affecting the inertial filling of die cavities in forging. J Mater Process Technol 25(3):297–302. https://doi.org/10.1016/0924-0136(91)90114-T

    Article  Google Scholar 

  42. Nagarajan B, Castagne S, Wang Z, Zheng HY, Nadarajan K (2015) Influence of plastic deformation in flexible pad laser shock forming – experimental and numerical analysis. Int J Mater Form 10:109–123. https://doi.org/10.1007/s12289-015-1264-5

    Article  Google Scholar 

  43. Liu HX, Sun XQ, Shen ZB, Li L, Sha C, Ma Y, Gau JT, Wang X (2017) Experimental and numerical simulation investigation on laser flexible shock micro-bulging. Metals 7:93–108. https://doi.org/10.3390/met7030093

Download references

Acknowledgements

The work reported in this paper was supported by the National Natural Science Foundation of China (No. 51675243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Wang or Di Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, X., Zhang, D. et al. Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation. Int J Mater Form 16, 2 (2023). https://doi.org/10.1007/s12289-022-01723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01723-2

Keywords

Navigation