Skip to main content
Log in

Role of temperature and strain rate on evolution of microstructure, flow stress and constitutive equation in hot deformation of AZ80A Mg alloy

  • 30th Anniversary of the Korean Society for Technology of Plasticity
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this work, the forgeability behaviour of AZ80A magnesium (Mg) alloys was studied using thermo-mechanical simulator and mechanical press. Tests were carried out over a temperature range of 573 K-673 K at a strain rate of 0.005–1/s. In most cases, the microstructure shows dynamic recrystallization (DRX) with a single peak of flow stress followed by a gradual decrease. Materials constant was obtained using a constitutive equation. Processing map for AZ80A Mg alloy was established and it reveals that at temperature 623 K, the materials show better forgeability. Considering this another set of wrought AZ80A Mg alloy was hot forged at a temperature of 623 K using a 250-ton mechanical press. Microstructural analysis of as-received, hot compressed and hot forged samples was done. As-received wrought alloy depicts the structure primarily consisting of α-Mg & Mg17Al12 intermetallics at the grain boundary. Hot compressed and forged sample shows a distinct necklace-like structure composed of fine recrystallized grains. During plastic deformation, lamellar and lath intermetallics are broken and scattered along the intergranular region in hot forging. Intermetallics act as Zener pinning effect and restrict the grain boundary mobility thus finer recrystallized grain is observed. Electron Beam Scattered Diffraction (EBSD) analysis of samples confirms that the forged sample shows maximum volume fraction of HAGB with random and weak texture along < 0001 > basal plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Luo AA (2002) Magnesium: Current and potential automotive applications. JOM 54:42–48. https://doi.org/10.1007/BF02701073

    Article  Google Scholar 

  2. Kahn RW, Hasen P, Kramer EJ (2000) the structure and properties of a non-ferrous alloy, a magnesium-based alloy. Science Press, Beijing

    Google Scholar 

  3. Mirzadeh H (2014) Constitutive analysis of Mg-Al-Zn magnesium alloys during hot deformation. Mech Mater 77:80–85. https://doi.org/10.1016/j.mechmat.2014.07.004

    Article  Google Scholar 

  4. Chen X, Liao Q, Niu Y, Jia Y, Le Q, Ning S, Hu C, Hu K, Yu F (2019) Comparison study of hot deformation behaviour and processing map of AZ80 magnesium alloy casted with and without ultrasonic vibration. J Alloy & Compds 803:585–596. https://doi.org/10.1016/j.jallcom.2019.06.242

    Article  Google Scholar 

  5. Jiang MG, Yan H, Gao L, Chen RS (2015) Microstructural evolution of Mg-7Al-2Sn Mg alloy during multi-directional impact forging. J Magnesium & Alloys 3:180–187. https://doi.org/10.1016/j.jma.2015.08.005

    Article  Google Scholar 

  6. Zhu SQ, Yan HG, Chen JH, Wu YZ, Du YG, Liao XZ (2013) Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range. Mater Sci Eng A 559:765–772. https://doi.org/10.1016/j.msea.2012.09.022

    Article  Google Scholar 

  7. Asgari H, Szpunar JA, Odeshi AG (2014) Texture evolution and dynamic mechanical behaviour of cast AZ magnesium alloys under high strain rate compressive loading. Mater Des 61:26–34. https://doi.org/10.1016/j.matdes.2014.04.049

    Article  Google Scholar 

  8. Xia XS, Chen Q, Li JP, Shu DY, Hu CK, Huang SH, Zhao ZD (2014) Characterization of hot deformation behaviour of as-extruded Mg-Gd-Y-Zn-Zr alloy. J Alloy Compds 610:203–211. https://doi.org/10.1016/j.jallcom.2014.04.210

    Article  Google Scholar 

  9. Li QZ (2012) Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings. Mater Sci Eng A 540:130–134. https://doi.org/10.1016/j.msea.2012.01.116

    Article  Google Scholar 

  10. Khan MI, Ahmad OM, Mohammed A, Elhachmi E, Mamoun M (2014) Influence of Cooling Rate on Microsegregation Behavior of Magnesium Alloys. J Mater 2014:1–18. https://doi.org/10.1155/2014/657647

    Article  Google Scholar 

  11. Dahle AK, Lee YC, Nave MD, Schaffer PL, Stjohn DH (2009) Development of the As-Cast Microstructure in Magnesium-Aluminum Alloys. J Light Metals 1:61–72. https://doi.org/10.1016/s1471-5317(00)00007-9

    Article  Google Scholar 

  12. Jain S, Gokhale A, Jain J, Singh SS, Krishnaswamy H (2017) Fatigue behaviour of aged and solution treated AZ61 Mg alloy at small length scale using nanoindentation. Mater Sci Eng A 684:652–659. https://doi.org/10.1016/j.msea.2016.12.111

    Article  Google Scholar 

  13. Naik GM, Gote GD, Narendranath S, Kumar SS (2018) The impact of homogenization treatment on microstructure microhardness and corrosion behaviour of wrought AZ80 magnesium alloys in 3.5 wt% NaCl solution. Mater Res Exp 5:086513. https://doi.org/10.1088/2053-1591/aad31f

    Article  Google Scholar 

  14. Zheng L, Nie H, Liang W, Wang H, Wang Y (2016) Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys. J Magnesium Alloys 4:115–122. https://doi.org/10.1016/j.jma.2016.04.002

    Article  Google Scholar 

  15. Tsao LC, Chen CH, Wu RW, Chang SY, Chen RS (2015) Plastic flow behaviour, microstructure, and corrosion behaviour of AZ61 Mg alloy during hot compression deformation. J Manuf Proc 18:167–174. https://doi.org/10.1016/j.jmapro.2015.01.008

    Article  Google Scholar 

  16. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater 61:782–817. https://doi.org/10.1016/j.actamat.2012.10.038

    Article  Google Scholar 

  17. Qiu W, Liu Z, Yu R, Chen J, Ren Y, He J, Li W, Li C (2019) Utilization of VN particles for grain refinement and mechanical properties of AZ31 magnesium alloy. J Alloy Compds 781:1150–1158. https://doi.org/10.1016/j.jallcom.2018.12.124

    Article  Google Scholar 

  18. Liu X, Si-qi Y, Zhang Z, Le Q, Xue J (2018) Effect of limestone ores on grain refinement of as-cast commercial AZ31 magnesium alloys. Trans Nonferrous Metal Soc China 28(6):1103–1113. https://doi.org/10.1016/S1003-6326(18)64746-6

    Article  Google Scholar 

  19. Paresh P, Dwayne T, Kumar SS, Mary WA, Hamid J, Williams BW (2020) Effect of temperature on the hot deformation behaviour of AZ80 magnesium alloy. Mater Sci Eng A 794(9):139923. https://doi.org/10.1016/j.msea.2020.139923

    Article  Google Scholar 

  20. Pourbahari B, Mirzadeh H, Emamy M (2017) Elucidating the effect of intermetallic compounds on the behaviour of Mg-Gd-Al-Zn magnesium alloys at elevated temperatures. J Mater Res 32:4186–4195. https://doi.org/10.1557/jmr.2017.415

    Article  Google Scholar 

  21. Sellars CM, Whiteman JA (1979) Recrystallization and grain growth in hot rolling. Metal Sci 13(3–4):187–194. https://doi.org/10.1179/msc.1979.13.3-4.187

    Article  Google Scholar 

  22. Wang J, Chen J, Zhao Z, Ruan XY (2008) Dynamic recrystallization behaviour of microalloyed forged steel. J Iron Steel Res Int 15(3):78–81. https://doi.org/10.1016/S1006-706X(08)60130-2

    Article  Google Scholar 

  23. Barnett MR (2003) Hot working microstructure map for magnesium AZ31. Mater Sci Forum 426(432):515–520. https://doi.org/10.4028/www.scientific.net/MSF.426-432.515

    Article  Google Scholar 

  24. Liu G, Xie W, Hadadzadeh A, Wei G, Ma Z, Liu J, Yang Y, Xie W, Peng X, Wells M (2018) Hot deformation behaviour and processing map of a superlight dual-phase Mg–Li alloy. J Alloy Compds 766:460–469. https://doi.org/10.1016/j.jallcom.2018.07.024

    Article  Google Scholar 

  25. Sakai T, Jonas JJ (1984) Overview no. 35 Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metallurgica 32(2):189–209. https://doi.org/10.1016/0001-6160(84)90049-X

    Article  Google Scholar 

  26. Sarebanzadeh M, Mahmudi R, Roumina R (2015) Constitutive analysis and processing map of an extruded Mg-3Gd-1Zn alloy under hot shear deformation. Mater Sci Eng A 637:155–161. https://doi.org/10.1016/j.msea.2015.04.038

    Article  Google Scholar 

  27. Wei G, Peng X, Hadadzadeh A, Mahmoodkhani Y, Xie W, Yang Y, Wells MA (2015) Constitutive modelling of Mg-9Li-3Al-2Sr-2Y at elevated temperatures. Mech Mater 89:241–253. https://doi.org/10.1016/j.mechmat.2015.05.006

    Article  Google Scholar 

  28. Myshlyaev MM, Mcqueen HJ, Mwembela A, Konopleva E (2002) Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Mater Sci Eng A 337(1–2):121–133. https://doi.org/10.1016/S0921-5093(02)00007-2

    Article  Google Scholar 

  29. Oikawa H, Honda K, Ito S (1984) Experimental study on the stress range of class I behaviour in the creep of Al-Mg alloys. Mater Sci Eng 64(2):237–245. https://doi.org/10.1016/0025-5416(84)90107-1

    Article  Google Scholar 

  30. Takagi H, Dao M, Fujiwara M, Otsuka M (2006) Prediction of the Constitutive Equation for Uniaxial Creep of a Power-Law Material through Instrumented Micro indentation Testing and Modeling. Mater Trans 47:2006–2014. https://doi.org/10.2320/matertrans.M2013370

    Article  Google Scholar 

  31. Motallebi R, Savaedi Z, Mirzadeh H (2022) Additive manufacturing - A review of hot deformation behaviour and constitutive modelling of flow stress. Current Opinion in Solid State and Mater Sci 26(3):100992. https://doi.org/10.1016/j.cossms.2022.100992

    Article  Google Scholar 

  32. Savaedi Z, Motallebi R, Mirzadeh H (2022) A review of hot deformation behaviour and constitutive models to predict flow stress of high-entropy alloy. J Alloys Compds 903:163964. https://doi.org/10.1016/j.jallcom.2022.163964

    Article  Google Scholar 

  33. Prasad YVRK, Seshacharyulu T (1998) Modelling of hot deformation for microstructural control. Int Mater Rev 43(6):243–258. https://doi.org/10.1179/imr.1998.43.6.243

    Article  Google Scholar 

  34. Kwak T, Kim D, Yang J, Yoon Y, Kim SK, Lim H, Kim WJ (2014) Effect of CaO on hot workability and microstructure of Mg-9.5 Zn-2Y alloy. Magnesium Technol 297–300. https://doi.org/10.1007/978-3-319-48231-6_57

  35. Wang L, Fang G, Leeflang M, Duszczyk J, Zhou J (2014) Investigation into the hot workability of the as-extruded WE43 magnesium alloy using processing map. J Mech Behaviour Biomed Mater 32:270–278. https://doi.org/10.1016/j.jmbbm.2014.01.011

    Article  Google Scholar 

  36. Xia X, Chen Q, Zhang K, Zhao Z, Ma M, Li X, Li Y (2013) Hot deformation behaviour and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy. Mater Sci Eng A 587:283–290. https://doi.org/10.1016/j.msea.2013.08.066

    Article  Google Scholar 

  37. Ansari N, Tran B, Poole WJ, Singh SS, Krishnaswamy H, Jain J (2020) High temperature deformation behaviour of Mg-5wt % Y binary alloy: Constitutive analysis and processing maps. Mater Sci Eng A 777:139051. https://doi.org/10.1016/j.msea.2020.139051

    Article  Google Scholar 

  38. Srinivasan N, Prasad YVRK, Ramarao P (2008) Hot deformation behaviour of Mg-3Al alloy-A study using processing map. Mater Sci Eng A 476(1):146–156. https://doi.org/10.1016/j.msea.2007.04.103

    Article  Google Scholar 

  39. Zhou Y, Chen Z, Ji J, Sun Z (2019) Effects of second phases on deformation behaviour and dynamic recrystallization of as-cast Mg-4.3Li-4.1Zn-1.4Y alloy during hot compression. J Alloys Compds 770:540–548. https://doi.org/10.1016/j.jallcom.2018.08.129

    Article  Google Scholar 

  40. Ji G, Li F, Li Q, Li H, Li Z (2010) Research on the dynamic recrystallization kinetics of Aermet 100 steel. Mater Sci Eng A 527(9):2350–2355. https://doi.org/10.1016/j.msea.2009.12.001

    Article  Google Scholar 

  41. Xu Y, Hu X, Sun Y (2014) Dynamic recrystallization kinetics of as-cast AZ91D alloy. Trans Nonferrous Metal Soc China 24(6):1683–1689. https://doi.org/10.1016/S1003-6326(14)63241-6

    Article  Google Scholar 

  42. Xu SW, Kamado S, Matsumoto N, Honna T, Kojima Y (2009) Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Mater Sci Eng A 527(1–2):52–60. https://doi.org/10.1016/j.msea.2009.08.062

    Article  Google Scholar 

  43. Wei-Jen Lai, Yi-Yun Li, Yung-Fu Hsu, Shan Trong, Wen-Hsiung Wang (2009) Aging behaviour and precipitate morphologies of Mg-7.7Al-0.5Zn-0.3Mn (wt. %) alloy. J Alloys Compd 476(1–2):118–124. https://doi.org/10.1016/j.jallcom.2008.08.043

    Article  Google Scholar 

  44. Celotto S (2000) TEM study of continuous precipitation in Mg-9 wt. % Al- 1 wt. % Zn alloy. Acta Mater 48(8):1775–1787. https://doi.org/10.1016/S1359-6454(00)00004-5

    Article  Google Scholar 

  45. Günter G (2004) Recovery, recrystallization, grain growth. Physical Foundations of Materials Science. Springer, Verlag, pp 303–356

    Google Scholar 

  46. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, Mcnelley TR, Mcquuen HJ, Rollet AD (1997) Current issues in recrystallization: a review. Mater Sci Eng A 238(2):219–274. https://doi.org/10.1016/S0921-5093(97)00424-3

    Article  Google Scholar 

  47. Kim J, Okayasu K, Fukutomi H (2013) Deformation Behavior and Texture Formation in AZ80 Magnesium Alloy during Uniaxial Compression Deformation at High Temperatures. Met Trans 54(2):192–198. https://doi.org/10.2320/matertrans.H-M2012832

    Article  Google Scholar 

  48. Mirzadeh H (2014) A comparative study on the hot flow stress of Mg-Al-Zn magnesium alloys using a simple physically-based approach. J Magnes Alloys 2:225–229. https://doi.org/10.1016/j.jma.2014.09.003

    Article  Google Scholar 

  49. Varin RA, Bystrzycki J, Calka A (1999) Effect of annealing on the microstructure, ordering and microhardness of ball milled cubic (L12) titanium trialuminide intermetallic powder. Intermetallics 7(7):785–796. https://doi.org/10.1016/S0966-9795(98)00127-7

    Article  Google Scholar 

  50. Klug HP, Alexander L (1974) X-ray Diffraction procedures for Poly-crystalline and Amorphous Materials, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  51. Dongal M, El-denglawey A, Elhady AF, Abuelwafa AA (2012) Structural properties of nano 5, 10, 15, 20-Tetraphenyl-21H,23H-porphine nickel (II) thin films. Curr Appl Phys 12(5):1334–1339. https://doi.org/10.1016/j.cap.2012.02.051

    Article  Google Scholar 

  52. Laugier J, Bochu B (2000) LMGP-Suite of Programs for the Interpretation of X-ray Experiments, ENSP/Laboratories des Materiaux et du Genie Physique, BP46.38042, Saint Martin d’Heres, France.

Download references

Acknowledgements

The authors of this research article would like to thank ARAI management and the materials team for their support in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Ajeet Babu.

Ethics declarations

Conflict of Interest

The authors declare that there is no potential conflict of interest towards the work reported in this research article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, P.K.A., Karle, U.S., Ambhore, Y. et al. Role of temperature and strain rate on evolution of microstructure, flow stress and constitutive equation in hot deformation of AZ80A Mg alloy. Int J Mater Form 15, 76 (2022). https://doi.org/10.1007/s12289-022-01722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01722-3

Keywords

Navigation