Skip to main content
Log in

A simple ductile failure model with application to AA5182 aluminium sheet forming

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In the present work the recently introduced Joined Ductile Failure (JDF) model has been slightly improved and is applied to sheet forming of an AA5182 aluminium alloy. Despite its simplicity the validation examples documented in the present work reveal that the JDF model is able of accurately predicting the onset as well as the location of ductile failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. ABAQUS is a trademark of Dassault Systèmes.

References

  1. Aretz H, Barlat F (2004) General orthotropic yield functions based on linear stress deviator transformations. In: Ghosh S, Lee JK, Castro JC (eds) Proc. 8th international conference on numerical methods in industrial forming processes - NUMIFORM 2004, AIP Conf. Proc., vol 712, pp 147–156

  2. Aretz H (2006) A less hypothetical perspective on rate-independent continuum theory of metal plasticity. Mech Res Commun 33:734–738

    Article  MATH  Google Scholar 

  3. Aretz H (2007) Numerical analysis of diffuse and localized necking in orthotropic sheet metals. Int J Plast 23:798–840

    Article  MATH  Google Scholar 

  4. Aretz H (2007) A consistent plasticity theory of incompressible and hydrostatic pressure sensitive metals. Mech Res Commun 34:344–351

    Article  MATH  Google Scholar 

  5. Aretz H (2008) A simple isotropic-distortional hardening model and its application in elastic-plastic analysis of localized necking in orthotropic sheet metals. Int J Plast 24:1457–1480

    Article  MATH  Google Scholar 

  6. Aretz H, Keller S, Vogt R, Engler O (2009) Advanced modelling of failure mechanisms in aluminium sheet forming simulation. Int J Mater Form 2(1):355–358. doi:10.1007/s12289-009-0443-7

    Article  Google Scholar 

  7. Aretz H (2010) An extension of Hill’s localized necking model. Int J Eng Sci 48:312–331

    Article  Google Scholar 

  8. Aretz H, Aegerter J, Engler O (2010) Analysis of earing in deep drawn cups. In: Barlat F, Moon YH, Lee MG (eds) Proc. 10th international conference on numerical methods in industrial forming processes - NUMIFORM 2010, AIP Conf. Proc., vol 1252, pp 417–424

  9. Aretz H, Keller S, Vogt R, Engler O (2011) Modelling of ductile failure in aluminium sheet forming simulation. Int J Mater Form 4:163–182

    Article  Google Scholar 

  10. Aretz H, Engler O (2011) Efficient and robust prediction of localized necking in sheet metals. In: Chung K, Han HN, Huh H, Barlat F, Lee M-G (eds) Proc. 8th international conference and workshop on numerical simulation of 3d sheet metal forming processes (NUMISHEET 2011), AIP Conf. Proc., vol 1383, Seoul, pp 453–460

  11. Aretz H, Barlat F (2012) Unconditionally convex yield functions for sheet metal forming based on linear stress deviator transformation. Key Eng Mater 504–506:667–672

    Article  Google Scholar 

  12. Aretz H, Barlat F (2013) New convex yield functions for orthotropic metal plasticity. Int J Non-Linear Mech 51:97–111

    Article  Google Scholar 

  13. Arrieux R (1995) Determination and use of the forming limit stress diagrams in sheet metal forming. J Mater Process Technol 53:47–56

    Article  Google Scholar 

  14. Banabic D, Soare S (2008) On the effect of the normal pressure upon the forming limit strains. In: Proc. 7th international conference and workshop on numerical simulation of 3d sheet metal forming processes (NUMISHEET 2008), vol 2008, Interlaken, pp 199–204

  15. Barlat F (1987) Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Mater Sci Eng 91:55–72

    Article  Google Scholar 

  16. Barlat F, Lian J (1989) Plastic behaviour and stretchability of sheet metals. Part II: effect of yield surface shape on forming limit. Int J Plast 5:131–147

    Article  Google Scholar 

  17. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transfomation-based anisotropic yield functions. Int J Plast 21:1009–1039

    Article  MATH  Google Scholar 

  18. Beese AM, Luo M, Li Y, Bai Y, Wierzbicki T (2010) Partially coupled anisotropic fracture model for aluminum sheets. Eng Fract Mech 77:1128–1152

    Article  Google Scholar 

  19. Chan KS (1985) Effects of plastic anisotropy and yield surface shape on sheet metal stretchability. Metall and Mater Trans A 16A:629–639

    Article  Google Scholar 

  20. Chung K, Wagoner RH (1988) Effects of work-hardening and rate sensitivity on the sheet tensile test. Metall and Mater Trans A 19A:293–300

    Article  Google Scholar 

  21. Chung K, Ma N, Park T, Kim D, Yoo D, Kim C (2011) A modified damage model for advanced high strength steel sheets. Int J Plast 27:1485–1511

    Article  MATH  Google Scholar 

  22. Clift SE, Hartley P, Sturgess CEN, Rowe GW (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32:1–17

    Article  Google Scholar 

  23. Clift SE (1992) Fracture in forming processes. In: Hartley P, Pillinger I, Sturgess C (eds) Numerical modelling of material deformation processes. Springer-Verlag

  24. Emmens WC (2011) Formability – a review of parameters and processes that control, limit or enhance the formability of sheet metal. Springer-Verlag

  25. Firat M (2012) A finite element modeling and prediction of stamping formability of a dual-phase steel in cup drawing. Mater Des 34:32–39

    Article  Google Scholar 

  26. Friedman PA, Pan J (2000) Effects of plastic anisotropy and yield criteria on prediction of forming limit curves. Int J Mech Sci 42:29–48

    Article  MATH  Google Scholar 

  27. Giagmouris T, Kyriakides S, Korkolis YP, Lee L-H (2010) On the localization and failure in aluminum shells due to crushing induced bending and tension. Int J Solids Struct 47:2680–2692

    Article  MATH  Google Scholar 

  28. Graf A, Hosford W (1994) The influence of strain-path changes on forming limit diagrams of Al 6111 T4. Int J Mech Sci 36:897–910

    Article  Google Scholar 

  29. Gruben G, Hopperstad OS, Børvik T (2012) Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL. Int J Mech Sci 62:133–146

    Article  Google Scholar 

  30. Hill R (1950) A theory of the plastic bulging of a metal diaphragm by lateral pressure. Phil Mag 41:1133–1142

    MATH  Google Scholar 

  31. Hill R (1952) On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys of Solids 1:19–30

    Article  Google Scholar 

  32. Hosford WF, Caddell RM (1993) Metal forming – mechanics and metallurgy, 2nd edn. Prentice Hall

  33. Hosford WF (2010) Mechanical behavior of materials, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  34. Jain M, Allin J, Lloyd DJ (1999) Fracture limit prediction using ductile fracture criteria for forming of an automotive aluminum sheet. Int J Mech Sci 41:1273–1288

    Article  MATH  Google Scholar 

  35. Kachanov LM (2004) Fundamentals of the theory of plasticity. Dover

  36. Karhausen KF, Aretz H, Nitzsche G (2012) Bedeutung der Fertigungskette für die Werkstoffeigenschaften und Oberflächenqualität von Al-Automobilband. In: Liewald M (ed) Proc. of the international conference on new developments in sheet metal forming, Fellbach, pp 201–230

  37. Khan AS, Liu H (2012) A new approach for ductile fracture prediction on Al 2024-T351 alloy. Int J Plast 35:1–12

    Article  Google Scholar 

  38. Keller S, Hotz W, Friebe H (2009) Yield curve determination using the bulge test combined with optical measurement Proc. International Conference of the International Deep Drawing Research Group (IDDRG). Golden, CO

  39. Kestner SC, Koss DA (1987) On the influence of strain-path changes on fracture. Metall and Mater Trans A 18A:637–639

    Article  Google Scholar 

  40. Kohara S (2005) Influence of strain path on the forming-limit curve in aluminum. Metall and Mater Trans A 36A:1033–1037

    Article  Google Scholar 

  41. Kuroda M, Tvergaard V (2000) Effect of strain path changes on limits to ductility of anisotropic metal sheets. Int J Mech Sci 42:867–887

    Article  MATH  Google Scholar 

  42. Lange K (1984) Umformtechnik – Band 1: Grundlagen, 2nd edn. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  43. Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624

    Article  Google Scholar 

  44. Lemaitre J, Desmorat R (2005) Engineering damage mechanics – ductile, creep, fatigue and brittle failures. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  45. Li Y, Wierzbicki T (2010) Prediction of plane strain fracture of AHSS sheets with post-initiation softening. Int J Solids Struct 47:2316–2327

    Article  MATH  Google Scholar 

  46. Li Y, Luo M, Gerlach J, Wierzbicki T (2010) Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol 210:1858–1869

    Article  Google Scholar 

  47. Lingbeek RA, Meinders T, Rietman A (2008) Tool and blank interaction in the cross-die forming process. In: Proc. 11th ESAFORM conference on material forming, Lyon

  48. Lou Y, Huh H, Lim S, Pack K (2012) New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct 49:3605–3615

    Article  Google Scholar 

  49. Lu ZH, Lee D (1987) Prediction of history-dependent forming limits by applying different hardening models. Int J Mech Sci 29:123–137

    Article  MATH  Google Scholar 

  50. Marciniak Z, Kuczyński K (1967) Limit strains in the process of stretch-forming sheet metal. Int J Mech Sci 9:609–620

    Article  Google Scholar 

  51. Marciniak Z, Kuczyński K, Pokora T (1973) Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int J Mech Sci 15:789–805

    Article  Google Scholar 

  52. Marciniak Z, Duncan JL, Hu SJ (2002) Mechanics of Sheet Metal Forming, 2nd edn. Butterworth-Heinemann

  53. Müschenborn W, Sonne H-M (1975) Einfluß des Formänderungsweges auf die Grenzformänderungen des Feinblechs. Archiv des Eisenhüttenwesens 46:597–602

    Google Scholar 

  54. Nurcheshmeh M, Green DE (2011) Investigation on the strain-path dependency of stress-based forming limit curves. Int J Mater Form 4:25–37

    Article  Google Scholar 

  55. Nurcheshmeh M, Green DE (2012) Influence of out-of-plane compression stress on limit strains in sheet metals. Int J Mater Form 5:213–226

    Article  Google Scholar 

  56. Oyane M, Sato T, Okimoto K, Shima S (1980) Criteria for ductile fracture and their applications. J Mech Work Technol 4:65–81

    Article  Google Scholar 

  57. Ozturk F, Lee D (2004) Analysis of forming limits using ductile fracture criteria. J Mater Process Technol 147:397–404

    Article  Google Scholar 

  58. Signorelli JW, Bertinetti MA (2009) On the role of constitutive model in the forming limit of FCC sheet metal with cube orientations. Int J Mech Sci 51:473–480

    Article  Google Scholar 

  59. Stoughton TB (2000) A general forming limit criterion for sheet metal forming. Int J Mech Sci 42:1–27

    Article  MATH  Google Scholar 

  60. Stoughton TB, Zhu X (2004) Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD. Int J Plast 20:1463–1486

    Article  MATH  Google Scholar 

  61. Stoughton TB, Yoon J-W (2011) A new approach for failure criterion for sheet metals. Int J Plast 27:440–459

    Article  MATH  Google Scholar 

  62. Suh CH, Jung Y-C, Kim YS (2010) Effects of thickness and surface roughness on mechanical properties of aluminum sheets. J Mech Sci Technol 24:2091–2098

    Article  Google Scholar 

  63. Tvergaard V (1978) Effect of kinematic hardening on localized necking in biaxially stretched sheets. Int J Mech Sci 20:651–658

    Article  MATH  Google Scholar 

  64. Volokh KY (2012) Characteristic length of damage localization in steel. Eng Fract Mech 94:85–86

    Article  Google Scholar 

  65. Wagoner RH, Chenot J-L (2001) Metal forming analysis. Cambridge University Press

  66. Wierzbicki T, Bao Y, Lee Y-W, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47:719–743

    Article  Google Scholar 

  67. Xu S, Weinmann KJ (2000) Effect of deformation-dependent material parameters on forming limits of thin sheets. Int J Mech Sci 42:677–692

    Article  MATH  Google Scholar 

  68. Xue L, Wierzbicki T (2009) Numerical simulation of fracture mode transition in ductile plates. Int J Solids Struct 46:1423–1435

    Article  MATH  Google Scholar 

  69. Zeng D, Chappuis L, Xia Z, Zhu X (2009) A path independent forming limit criterion for sheet metal forming simulations, SAE. Int J Mater Manuf 1:809–817. doi:10.4271/2008-01-1445

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support by the technical staff at Hydro R&D Bonn, in particular to Mr. M. Stellbogen, Mr. A. Hausen and Mr. F. Burgartz who carried out the experimental work. Furthermore, we would like to thank our colleagues for numerous fruitful discussions.

The constructive comments of the unknown reviewers on the original manuscript are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Aretz.

Appendix

Appendix

On stress-based necking criteria

In a theoretical work Hill [30] derived a criterion for the onset of plastic instability in the bulge-test. He assumed a power-law hardening of the form

$$Y_{\mathrm{ref}}(\bar{\varepsilon}) = K \cdot \bar{\varepsilon}^{n} $$
(22)

with \(\bar {\varepsilon } = |\varepsilon _{33}|\), whereby \(\varepsilon _{33}\) denotes the true thickness strain. Hill derived the critical strain \(\bar {\varepsilon }^*\) at maximum pressure, which marks the onset of plastic instability in the bulge-test, as follows [30]:

$$\bar{\varepsilon}^* = \frac{4}{11} \cdot (2n + 1) $$
(23)

One may easily see that even for a non-hardening (i.e. ideal-plastic) material with \(n = 0\) the critical strain is \(\bar {\varepsilon }^* = 4 / 11 \approx 0.36\), which is still a remarkable (but often too optimistic) value. For a non-hardening material the stresses in the sheet can not grow during plastic straining. In this case a stress-based necking criterion predicts necking at \(\bar {\varepsilon }^* = 0\), which is obviously in conflict with Hill’s theory and also with experimental results, see below. However, a necking criterion based on the equivalent plastic strain (as in the present work) provides correct results even in the non-hardening case. This illustrates (i) that these two necking criteria are not equivalent in general and (ii) that stress-based necking criteria are not generally applicable.

It should be mentioned that according to the authors’ experience the results of Hill’s theory for non-hardening metals can be qualitatively reproduced by means of bulge-test experiments using heavily cold-rolled pure as well as low-alloyed aluminium sheets of the AA1xxx and AA8xxx series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aretz, H., Keller, S., Engler, O. et al. A simple ductile failure model with application to AA5182 aluminium sheet forming. Int J Mater Form 7, 289–304 (2014). https://doi.org/10.1007/s12289-013-1127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-013-1127-x

Keywords

Navigation