Skip to main content
Log in

Fast resolution of incremental forming processes by the Multi-Mesh method. Application to cogging

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

A Multi-Mesh Multi-Physics (MMMP) method is developed to reduce the very long computational time required for simulating incremental forming processes such as cogging or ring rolling. It consists in using several finite element meshes on the same domain to solve the different physics of the problem. A reference mesh is used to accurately store the results and history variables, while the different computational meshes are optimized to solve each physic of the problem. The MMMP algorithm consists in two main key-steps: the generation of the different unstructured meshes and the data transfer between the meshes. The accuracy of the method is supported by using meshes that are embedded by nodes. The method is applied to the simulation of the cogging metal forming process for which it shows as accurate and more than ten times faster than the standard method with a single mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Groche P, Fritsche D, Tekkaya EA, Allwood JM, Hirt G, Neugebauer R (2007) Incremental Bulk Metal Forming. CIRP Ann Manuf Technol 56(2):635–656

    Article  Google Scholar 

  2. Chenot JL (1989) Three dimensional finite element modeling of forging process. Computational Plasticity Pineridge press, Swansea, pp 793–816

    Google Scholar 

  3. Hadoush A, Van den Boogaard AH (2008) Time reduction in implicit single point incremental sheet forming simulation by refinement-derefinement. Int J Mater Form 1(1):1167–1170

    Article  Google Scholar 

  4. Hadoush A, Van den Boogaard AH (2009) Substructuring in the implicit simulation of single point incremental sheet forming. Int J Mater Form 2(3):181–189

    Article  Google Scholar 

  5. El Hadj M (1987) Application des méthodes multi-grilles aux calculs des structures élastiques et visco-plastiques. Ph.D. Thesis, Mines Paristech, France

  6. Le Dain M A (1991) Méthodes multigrille et H-adaptation : application au calcul de structures élastiques bidimensionnelles. Ph.D. Thesis, Mines Paristech, France

  7. Mocellin K, Fourment L, Coupez T, Chenot JL (2001) Toward large scale F.E. computation of hot forging process using iterative solvers, parallel computation and multigrid algorithms. Int J Numer Meth Eng 52(5–6):473–488

    Article  MATH  Google Scholar 

  8. Rey B, Mocellin K, Fourment L (2008) A node-nested Galerkin multigrid method for metal forging simulation. Comput Visual Sci 11(1):17–25

    Article  MathSciNet  Google Scholar 

  9. Ramadan M (2010) Une Méthode MultiMaillages MultiPhysiques Parallèles pour accélérer les calculs des procédés multiphysiques incrémentaux. Ph.D. Thesis, Mines Paristech, France

  10. Rannou J, Gravouil A, Baïetto-Dubourg MC (2007) Éléments finis étendus multi-grilles avec raffinement local pour la mécanique de la rupture. Acte du 8ème Colloque National en Calcul des Structures 1:69–74, Giens France

  11. Kim NS, Machida S, Kobayashi S (1990) Ring rolling process simulation by the three dimensional finite element method. Int J Mach Tools Manuf 30(4):569–577

    Article  Google Scholar 

  12. Hu ZM, Pillinger I, Hartley P, McKenzie S, Spence PJ (1994) Three dimensional finite-element modeling of ring rolling. J Mater Process Technol 45(1–4):143–148

    Article  Google Scholar 

  13. Keun Moon H, Cheol Lee M, Soo Joun M (2008) Predicting polygonal-shaped defects during hot ring rolling using a rigid-viscoplastic finite element method. Int J Mech Sci 50:306–314

    Article  MATH  Google Scholar 

  14. Barton G, Li X, Hirt G (2007) Finite-element modeling of multi-pass forging of nickel-base alloys using a Multi-Mesh method. Mater Sci Forum 539–543:2503–2508

    Article  Google Scholar 

  15. Hirt G, Kopp R, Hofmann O, Franzke M, Barton G (2007) Implementing a high accuracy Multi-Mesh Method for incremental Bulk Metal Forming. CIRP Ann Manuf Technol 56(1):313–316

    Article  Google Scholar 

  16. Li R (2005) On Multi-Mesh h-adaptive methods. J Sci Comput 24(3):321–341

    Article  MATH  MathSciNet  Google Scholar 

  17. Hu X, Li R, Tang T (2009) A Multi-Mesh adaptive finite element approximation to phase field models. Comm Comput Phys 5(5):1012–1029

    MathSciNet  Google Scholar 

  18. Di Y, Wang XP (2009) Precursor simulations in spreading using a Multi-Mesh adaptive finite element method. J Comput Phys 228(5):1380–1390

    Article  MATH  MathSciNet  Google Scholar 

  19. Terzolo L (2004) Vers une prédiction de la durée de vie des outils de forge à chaud par la modélisation numérique du régime thermique et de l’usure abrasive. Ph.D. Thesis, Mines Paristech, France

  20. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21(4):337–344

    Article  MATH  MathSciNet  Google Scholar 

  21. Fourment L, Chenot JL, Mocellin K (1999) Numerical formulations and algorithms for solving contact problems in metal forming simulation. Int J Numer Meth Eng 46(9):1435–1462

    Article  MATH  Google Scholar 

  22. Zlamal M (1980) Finite element method in physical and technical applications. Comput Phys Comm 20(1):37–42

    Article  Google Scholar 

  23. Ramadan M, Fourment L, Perchat E (2008) A Bimesh Method for Speeding-up Incremental Processes such as Cogging. Proceedings of the 9th International Conference on Technology of Plasticity (ICTP), Gyeongju, Korea

  24. Ramadan M, Fourment L, Digonnet H (2009) A parallel two mesh method for speeding-up processes with localized deformations: application to cogging. Int J Mater Form 2(1):581–584

    Article  Google Scholar 

  25. Ramadan M, Fourment L, Digonnet H (2009) Une méthode Bimaillages parallèle pour accélérer le temps de calcul des procédés incrémentaux. Acte du 9ème Colloque National en Calcul des Structures 1:999–104, Giens France

    Google Scholar 

  26. Ramadan M, Gavoille S, Fourment L, Digonnet H (2011) Une méthode MultiMaillages MultiPhysiques parallèle pour accélérer les calculs des procédés multiphysiques incrémentaux. Clé USB 10e colloque national en calcul des structures, Giens France

  27. Coupez T (1994) A mesh improvement method for 3d automatic remeshing . In N P Weatherill et al. (Eds.), Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, Pineridge Press, pp 615–626

  28. Coupez T (2000) Génération de maillage et adaptation de maillage par optimisation locale. Revue européenne des éléments finis 9:403–423

    MATH  Google Scholar 

  29. Alfaro I, Yvonnet J, Cueto E, Chinesta F, Doblare M (2006) Meshless methods with application to metal forming. Comput Meth Appl Mech Eng 195(48–49):6661–6675

    Article  MATH  MathSciNet  Google Scholar 

  30. Alfaro I, Gonzalez D, Bel D, Cueto E, Doblare M, Chinesta F (2006) Recent advances in the meshless simulation of aluminium extrusion and other related forming processes. Arch Comput Meth Eng 13(1):3–44

    Article  MATH  Google Scholar 

  31. Filice L, Alfaro I, Gagliardi F, Cueto E, Micari F, Chinesta F (2009) A preliminary comparison between finite element and meshless simulations of extrusion. J Mater Process Tech 209(6):3039–3049

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the consortium « club forgeage libre » which gathers the following industries: ArcelorMittal, Cézus (Areva), Sfarsteel (Areva), Aubert & Duval and Manoir industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Ramadan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadan, M., Fourment, L. & Digonnet, H. Fast resolution of incremental forming processes by the Multi-Mesh method. Application to cogging. Int J Mater Form 7, 207–219 (2014). https://doi.org/10.1007/s12289-012-1121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-012-1121-8

Keywords

Navigation