Skip to main content

Computational Strategies for Speeding-Up F.E. Simulations of Metal Forming Processes

  • Chapter
  • First Online:
Advances in Computational Plasticity

Abstract

An overview of various numerical methods developed for speeding-up computations is presented in the field of the bulk material forming under solid state, which is characterized by complex and evolving geometries requiring frequent remeshings and numerous time increments. These methods are oriented around the axis that constitutes the meshing problem. The multi-mesh method allows to optimally solve several physics involved on the same domain, according to its finite element discretization with several different meshes, for example in the cogging or cold pilgering processes. For quasi steady-state problems and problems with quite pronounced localization of deformation, such as Friction Stir Welding (FSW) or High Speed Machining, an Arbitrary Lagrangian or Eulerian formulation (ALE) with mesh adaptation shows to be imperative. When the problem is perfectly steady, as for the rolling of long products, the direct search for the stationary state allows huge accelerations. In the general case, where no process specificity can be used to solve the implicit equations, the multigrid method makes it possible to construct a much more efficient iterative solver, which is especially characterized by an almost linear asymptotic cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Pérémé et al., Benefits of high performance computing applied to the numerical simulation of forged parts, in 20th International Forging Congress (2011)

    Google Scholar 

  2. N. Soyris et al., Forging of a connecting rod: 3D finite element calculation. Eng. Comput. 9(1), 63–80 (1992)

    Article  Google Scholar 

  3. T. Coupez, S. Marie, From a direct solver to a parallel iterative solver in 3-D forming simulation. Int. J. Supercomput. Appl. High Perform. Comput. 11(4), 277–285 (1997)

    Google Scholar 

  4. J.L. Chenot, L. Fourment, K. Mocellin, Numerical treatment of contact and friction in FE simulation of forming processes. J. Mater. Process. Technol. 125–126, 45–52 (2002)

    Article  Google Scholar 

  5. T. Coupez, N. Soyris, J.-L. Chenot, 3-D finite element modelling of the forging process with automatic remeshing. J. Mater. Process. Technol. 27(1–3), 119–133 (1991)

    Article  Google Scholar 

  6. T. Coupez, A mesh improvement method for 3D automatic remeshing, in Numerical Grid Generation in Computational Fluid Dynamics and Related Fields (Pineridge Press, 1994)

    Google Scholar 

  7. T. Coupez, H. Digonnet, R. Ducloux, Parallel meshing and remeshing. Appl. Math. Model. 25(2), 153–175 (2000)

    Article  MATH  Google Scholar 

  8. M. Ramadan, L. Fourment, H. Digonnet, A parallel two mesh method for speeding-up processes with localized deformations: application to cogging. Int.J. Mater. Form. 2, 581–584 (2009)

    Article  Google Scholar 

  9. K.W. Kpodzo, Accélération des calculs pour la simulation du laminage à pas de pèlerin en utilisant la méthode multimaillages. Ecole Nationale Supérieure des Mines de Paris (2014)

    Google Scholar 

  10. G. Carte et al., Coarsening techniques in multigrid applications on unstructured meshes, in European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS (2000)

    Google Scholar 

  11. S. Kumar, L. Fourment, S. Guerdoux, Parallel, second-order and consistent remeshing transfer operators for evolving meshes with superconvergence property on surface and volume. Finite Elem. Anal. Des. 93, 70–84 (2015)

    Article  MathSciNet  Google Scholar 

  12. O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101(1–3), 207–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Fourment, J.L. Chenot, Error estimators for viscoplastic materials—application to forming processes. Eng. Comput. 12(5), 469–490 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Boussetta, T. Coupez, L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulation. Comput. Methods Appl. Mech. Eng. 195(48–49), 6626–6645 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Guerdoux, L. Fourment, Error estimation and accurate mapping based ALE formulation for 3D simulation of friction stir welding, in NUMIFORM ‘07: Materials Processing and Design: Modeling, Simulation and Applications, Pts I and II (2007), pp. 185–190

    Google Scholar 

  16. C. Stoker et al., A velocity approach for the ALE-method applied to 2D and 3D problems. Simul. Mater. Process.: Theory Methods Appl. (1998), pp. 95–101

    Google Scholar 

  17. B. Boroomand, O.C. Zienkiewicz, Recovery by equilibrium in patches (REP). Int. J. Numer. Meth. Eng. 40, 137–164 (1997)

    Article  MathSciNet  Google Scholar 

  18. S. Guerdoux, L. Fourment, A 3D numerical simulation of different phases of friction stir welding. Model. Simul. Mater. Sci. Eng. 17(7) (2009)

    Google Scholar 

  19. M. Hachani, L. Fourment, A smoothing procedure based on quasi-C 1 interpolation for 3D contact mechanics with applications to metal forming. Comput. Struct. 128, 1–13 (2013)

    Article  Google Scholar 

  20. T. Hama et al., Finite-element simulation of springback in sheet metal forming using local interpolation for tool surfaces. Int. J. Mech. Sci. 50(2), 175–192 (2008)

    Article  MATH  Google Scholar 

  21. T. Nagata, Simple local interpolation of surfaces using normal vectors. Comput. Aided Geom. Des. 22, 327–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. D.L. Page et al., Normal vector voting: crease detection and curvature estimation on large, noisy meshes. Graph. Models 64(3–4), 199–229 (2002)

    Article  MATH  Google Scholar 

  23. G. Medioni, M.-S. Lee, C.-K. Tang, A Computational Framework for Segmentation and Grouping (Elsevier, 2000)

    Google Scholar 

  24. M. Assidi et al., Friction model for friction stir welding process simulation: calibrations from welding experiments. Int. J. Mach. Tools Manuf. 50(2), 143–155 (2010)

    Article  Google Scholar 

  25. M. Bäker, J. Rösler, C. Siemers, A finite model of high speed metal cutting with adiabatic shearing. Comput. Struct. 80, 495–513 (2002)

    Article  Google Scholar 

  26. D. Balagangadhar, D.A. Tortorelli, A displacement based reference frame formulation for the analysis of steady manufacturing processes, in Simulation of Materials Processing: Theory, Methods and Applications (1998), pp. 77–83

    Google Scholar 

  27. X. Qin, P. Michaleris, Themo-elasto-viscoplastic modelling of friction stir welding. Sci. Technol. Weld. Joining 14(7), 640–649 (2009)

    Article  Google Scholar 

  28. Y.S. Lee, P.R. Dawson, T.B. Dewhurst, Bulge predictions in steady-state bar rolling processes. Int. J. Numer. Meth. Eng. 30(8), 1403–1413 (1990)

    Article  Google Scholar 

  29. A. Hacquin, P. Montmitonnet, J.P. Guillerault, A steady state thermo-elastoviscoplastic finite element model of rolling with coupled thermo-elastic roll deformation. J. Mater. Process. Technol. 60(1–4), 109–116 (1996)

    Article  MATH  Google Scholar 

  30. U. Ripert, L. Fourment, J.-L. Chenot, An upwind least square formulation for free surfaces calculation of viscoplastic steady-state metal forming problems. Adv. Model. Simul. Eng. Sci. 2(1), 15 (2015)

    Article  Google Scholar 

  31. K. Mocellin et al., Toward large scale F.E. computation of hot forging process using iterative solvers, parallel computation and multigrid algorithms (English). Int. J. Numer. Methods Eng. 52(5–6), 473–488 (2001)

    Article  MATH  Google Scholar 

  32. B. Rey, K. Mocellin, L. Fourment, A node-nested Galerkin multigrid method for metal forging simulation. Comput. Vis. Sci. 11(1), 17–25 (2008)

    Article  MathSciNet  Google Scholar 

  33. P.R. Amestoy et al., A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Vi et al., Hybrid parallel multigrid preconditioner based on automatic mesh coarsening for 3D metal forming simulations (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Fourment .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Fourment, L. et al. (2018). Computational Strategies for Speeding-Up F.E. Simulations of Metal Forming Processes. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-60885-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60885-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60884-6

  • Online ISBN: 978-3-319-60885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics