Skip to main content
Log in

Compressible flow in a plate/plate rheometer: application to the experimental determination of reactive expansion’s models parameters for polyurethane foam

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The quality of polyurethane foam’s structure mainly depends on the manufacturing process, during what two concomitant principal exothermic chemical reactions take place: the first one creates CO2 dissolved into the fluid matrix (initiating micro-bubbles, expansion and coarsening of the foam) and the second one leads to the polymerization. In order to follow the rheological evolution of the PU foam during the process, the evolutions of the rheological properties of the foam during the process have been measured in a plate/plate rheometer with imposed deformation (RMS 800) and imposed stress (Stresstech). An analytical solution of the mechanical balance equation for viscoelastic compressible fluid has been proposed to describe the flow in this plate/plate rheometer with radial expansion. The trace of the elastic modulus G′ and the loss modulus G′′ as a function of time highlights the different steps of the foaming and polymerization process. The temperature dependence of both reactions follows Arrhenius’ laws. The recording of G′ and G′′ allows to identify kinetic parameters of numerical models for describing the expansion of a polymer foam and taking into account both chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Agassant JF, Avenas P, Sergent JP, Vergnes B, Vincent M (1996) La mise en forme des matières plastiques, 3eme edition, revue et augmentée, Ed. Techniques et documentation

  2. Amon M, Denson DC (1984) A study of the dynamics of foam growth: analysis of the growth of closely spherical bubbles. Polym Eng Sci 24:1026–1034

    Article  Google Scholar 

  3. Amon M, Denson DC (1986) A study of the dynamics of foam growth: analysis and experimental results for bulk density in structural foam molding. Polym Eng Sci 26:255–267

    Article  Google Scholar 

  4. Arafmanesh A, Advani SG, Michaelides EE (1990) A numerical study of bubble growth during low pressure structural foam molding process. Polym Eng Sci 30:1330–1337

    Article  Google Scholar 

  5. Arafmanesh A, Advani SG (1995) Nonisothermal bubble growth in polymeric foams. Polym Eng Sci 35:252–260

    Article  Google Scholar 

  6. Artavia LD, Macosko CW (1990) Foam kinetics. Proceedings of the SPI-33rd Annual Technical/Marketing Conference, Orlando, pp 55–561

  7. Bikard J, Bruchon J, Coupez T, Vergnes B (2005) Numerical prediction of the foam structure of polymeric materials by direct 3D simulation of their expansion by chemical reaction based on a multidomain method. J Mat Sci 40:5875–5881

    Article  Google Scholar 

  8. Bikard J, Bruchon J, Coupez T, Silva L (2007) Numerical simulation of 3D polyurethane expansion during manufacturing process. Colloids Surf A Physicochem Eng Aspects 309:49–63

    Article  Google Scholar 

  9. Castro JM, Macosko CW (1980) Kinetics and rheology of typical polyurethane reaction injection molding systems. SPE ANTEC Pech Papers 26:434–438

    Google Scholar 

  10. Coran AY (1964) Vulcanization. Part VI. A model and treatment for scorch delay kinetics. Rub Chem Tech 37:689–697

    Google Scholar 

  11. Dieterich D, Uhlig, K (1992) Polyurethanes. Ullmann’s Encyclopedia of Industrial Chemistry. Vol. A21, pp 665–716

  12. Doï M, Ohta T (1991) Dynamics and rheology of complex interfaces. J Chem Phys 95(2):1242

    Article  Google Scholar 

  13. Dollet B, Elias F, Quilliet C, Huillier A, Aubouy M, Graner F (2005) Two-dimensional flows of foam: drag exerted on circular obstacles and dissipation. A collection of papers presented at the 5th European Conference on Foams, Emulsions, and Applications, EUFOAM 2004, University of Marne-la-Vallee, Champs sur Marne (France), 5–8, July, 2004. Colloids and Surfaces A: Physicochemical and Engineering Aspects 263(1–3):101–110

    Article  Google Scholar 

  14. Elwell MJ, Ryan AJ (1996) In-situ studies of structure development during the reactive processing of model flexible polyurethane foam systems using FT-IR spectroscopy, synchrotron SAXS, and rheology. Macromolecules 29:2960–2968

    Article  Google Scholar 

  15. Everitt SL, Harlen OG, Wilson HJ, Read DJ (2003) Bubble dynamics in viscoelastic with application to reacting and non-reacting polymer foams. J Non-Newton Fluid Mech 114:83–107

    Article  MATH  Google Scholar 

  16. Gibson LJ, Ashby MF (1997) Cellular solids, structure and properties. Cambridge Solid State Science Series

  17. John R, Thachil EB, Neelakantan NR, Subramanian N (1991) A viscometric approach to the study of the kinetics of polyurethane reactions. Polym Plast Technol Eng 30:545–557

    Article  Google Scholar 

  18. Jurine S, Cox S, Graner F (2005) Dry three-dimensional bubbles: growth-rate, scaling state and correlations. Colloid Surf A Physicochem Eng Aspects 263(1–3):18–26

    Article  Google Scholar 

  19. Marotel Y (1983) Polyuréthanes. Technique de l’ingénieur, AM 3, 3425

  20. Mora E, Artavia LD, Macosko CW (1991) Modulus development during reactive urethane foaming. J Rheol 35(5):921–940

    Article  Google Scholar 

  21. Rochery M, Lam L (2000) Chemorheology of polyurethnae, vitrification and gelation studies. J Polym Sci Part B Polym Phys 38:544–551

    Article  Google Scholar 

  22. Thomas GL, de Almeida RMC, Graner F (2006) Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends towards a universal, statistically scale-invariant regime. Phys Rev E Stat Nonlin Soft Matter Phys 74(2): Part 1

  23. Tung CYM, Dynes PJ (1982) Relationships between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci 27:569–572

    Article  Google Scholar 

  24. Winter HH (1987) Can the gel point of a crosslinking polymer be detected by the G′-G′′ crossover. Polym Eng Sci 27:1698–1702

    Article  Google Scholar 

  25. Winter HH, Morganelli P, Chambon F (1988) Stoechiometry effect on rheology of model polyurethanes at gel point. Macromolecules 21:532–535

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. P. Motte, Mr. P. A. Niore and Mr. S. Vézine from FAURECIA S.A. for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bikard.

Appendix

Appendix

Analytical resolution of steady state coupled shear/expansion flow in a plate/plate rheometer

The objective of this appendix is to determine stress and rate of strain fields during shear and radial expansion in a foaming sample within a parallel plate/plate rheometer submitted to sinusoidal oscillations. Due to the fact the degassing and conversion reactions, one has to consider that rheology and density are functions of time. As the temperature field can be considered as homogeneous in the plate-plate rheometer, the chemical reactions can be also considered as homogeneous, such that neither the density nor the rheological parameters depend on r or z.

We consider an upper convective Maxwell viscoelastic behaviour. The stress balance equation of the mixture is given by:

$$ \begin{array}{*{20}c} {\nabla \cdot \sigma + \rho (t)g = 0} \hfill & {where} \hfill & {\left\{ \begin{gathered} \sigma = \sigma \prime \, - p\prime I \hfill \\ \theta \frac{{\Im \sigma \prime }}{{\Im t}} + \sigma \prime = 2\eta (t)D \hfill \\ \frac{{\Im \sigma \prime }}{{\Im t}} = \frac{{\partial \sigma \prime }}{{\partial t}} + \nabla \sigma \prime \cdot u - \nabla u \cdot \sigma \prime - \sigma \prime \cdot \nabla^T u \hfill \\ \end{gathered} \right.} \hfill \\ \end{array} $$
(A1)

where σ,σ′ and p′ are respectively the Cauchy stress tensor, the viscoelastic extra-stress tensor and an arbitrary pressure. \( \Im \sigma \prime /\Im t \) denotes the upper convective objective time derivative. θ is the characteristic time of the Maxwell model and η the viscosity.

One assumes the following velocity field:

$$ \left\{ {\begin{array}{*{20}c} {u_r \left( {t,r,z} \right) = V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)} \\ {u_{\theta } \left( {t,r,z} \right) = \Omega (t)rg(z)} \\ {u_z \left( {t,r,z} \right) = 0} \\ \end{array} } \right. $$
(A2)

The velocity gradient tensor is given by:

$$ \nabla u = \left[ {\begin{array}{*{20}c} {V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}} & { - \Omega (t)g(z)} & { - V(t)f(r)\left( {\frac{2z}{{e^2 }}} \right)} \\ {\Omega (t)g(z)} & {V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r}} & {\Omega (t)r\frac{dg}{dz}} \\ 0 & 0 & 0 \\ \end{array} } \right] $$

and the rate of strain tensor is equal to:

$$ D = sym\left( {\nabla u} \right) = \left[ {\begin{array}{*{20}c} {V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}} & 0 & { - V(t)f(r)\left( {\frac{z}{{e^2 }}} \right)} \\ 0 & {V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r}} & {\frac{1}{2}\Omega (t)r\frac{dg}{dz}} \\ { - V(t)f(r)\left( {\frac{z}{{e^2 }}} \right)} & {\frac{1}{2}\Omega (t)r\frac{dg}{dz}} & 0 \\ \end{array} } \right] $$

A-1 Solution for the continuity equation

We write the continuity equation at the macroscopic (on the volume V 0 ) and microscopic levels.

  • At the macroscopic level we writte a macroscopic balance equation on the volume V 0 of the sample between the parallele plates V 0 :

    $$ \frac{dM}{dt} = \int_{{V_0 }} {\frac{{\partial \rho }}{{\partial t}}} (t)dv + \int_{\Sigma } {\rho (t)u_r } \left( {t,r = R,z} \right)ds = 0 $$
    (A3)

The term \( \int_{{V_0 }} {\frac{{\partial \rho }}{{\partial t}}dv} \) corresponds to the mass variation in the volume between the plates, and the term \( \int_{\Sigma } {\rho (t)u_r } \left( {t,r = R,z} \right)ds \) denotes the mass of mixture which escapes from the rheometer through the periphery of the sample Σ (see Fig. 15). Then, taking into account that ρ is constant throughout the volume of the rheometer at each time we have: \( \frac{{\partial \rho }}{{\partial t}}\int_{{V_0 }} {dv = - \rho (t)\int_{\Sigma } {u_r } \left( {t,r = R,z} \right)ds} \) such that:

$$ \frac{{\partial \rho }}{{\partial t}}2e\pi R^2 = - \rho (t)2\pi \int_{- e}^e {V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f\left( {r = R} \right)Rdz} $$
Fig. 15
figure 15

Scheme of the radial expansion of the mixture out from the rheometer: V 0 area between the two plates, Σ perimeter of this area. a frequency f 0  = 10−2 Hz, b frequency f 0  = 5.10−2 Hz, c frequency f 0  = 10−1 Hz, d frequency f 0  = 1 Hz

By definition, f(r = R) = 1, such that:

$$ - \frac{1}{{\rho (t)}}\frac{{\partial \rho }}{{\partial t}} = \frac{{4V(t)}}{3R} $$
(A4)
  • On the other and, at the microscale, the continuity equation is:

    $$ \frac{{\partial \rho }}{{\partial t}}(t) + \nabla \cdot \left( {\rho (t)u} \right)dv = 0 $$

    then, introducing the velocity field leads to:

    $$ \frac{{\partial \rho }}{{\partial t}}(t) + \rho (t)V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\left( {\frac{df}{dr} + \frac{{f(r)}}{r}} \right) = 0 $$

By integrating this equation in the volume V 0 , one obtain:

$$ \frac{1}{{\rho (t)}}\frac{{\partial \rho }}{{\partial t}} + \frac{{4V(t)}}{{3R^2 }}\int_0^R {\left( {\frac{df}{dr} + \frac{{f(r)}}{r}} \right)rdr = 0} $$

Taking into account Eq. (A1) leads to:

$$ \int_0^R {\left( {\frac{df}{dr} + \frac{{f(r)}}{r}} \right)rdr = R} $$

and a trivial solution of this equation is:

$$ f(r) = \frac{r}{R} $$
(A5)

The radial velocity profile is then parabolic with respect to z and linear with respect to r.

A-2 Solution for the stress balance equation

Introducing the material derivative and the convective time derivative of the extra-stress tensor leads to the set of Maxwell equations:

$$ \left\{ \begin{gathered} \theta \left[ {\frac{{\partial \sigma \prime_{rr} }}{{\partial t}} + V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{rr} }}{{\partial r}} - 2V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}\sigma \prime_{rr} + 2V(t)f(r)\left( {\frac{2z}{{e^2 }}} \right)\sigma \prime_{rz} } \right] + \sigma \prime_{rr} = 2\eta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr} \hfill \\ \theta \left[ {\frac{{\partial \sigma \prime_{{\theta \theta }} }}{{\partial t}} + V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{{\theta \theta }} }}{{\partial r}} - 2V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r}\sigma \prime_{{\theta \theta }} - 2\Omega (t)r\frac{dg}{dz}\sigma \prime_{{\theta z}} } \right] + \sigma \prime_{{\theta \theta }} = 2\eta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r} \hfill \\ \theta \left[ {\frac{{\partial \sigma \prime_{zz} }}{{\partial t}} + V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{zz} }}{{\partial r}}} \right] + \sigma \prime_{zz} = 0 \hfill \\ \theta \left[ {\frac{{\partial \sigma \prime_{{r\theta }} }}{{\partial t}} + V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{{r\theta }} }}{{\partial r}} - 2V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}\sigma \prime_{{r\theta }} + V(t)f(r)\left( {\frac{2z}{{e^2 }}} \right)\sigma \prime_{{\theta z}} - \Omega (t)r\frac{dg}{dz}\sigma \prime_{rz} } \right] + \sigma \prime_{{r\theta }} = 0 \hfill \\ \theta \left[ {\frac{{\partial \sigma \prime_{rz} }}{{\partial t}} + V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{rz} }}{{\partial r}} - V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}\sigma \prime_{rz} + V(t)f(r)\left( {\frac{2z}{{e^2 }}} \right)\sigma \prime_{zz} } \right] + \sigma \prime_{rz} = - 2\eta V(t)f(r)\left( {\frac{z}{{e^2 }}} \right) \hfill \\ \theta \left[ {\frac{{\partial \sigma \prime_{{\theta z}} }}{{\partial t}} + V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{{\theta z}} }}{{\partial r}} - V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r}\sigma \prime_{{\theta z}} - \Omega (t)r\frac{dg}{dz}\sigma \prime_{zz} } \right] + \sigma \prime_{{\theta z}} = \eta \Omega (t)r\frac{dg}{dz} \hfill \\ \end{gathered} \right. $$
(A6)

Assuming sinusoïdal sollicitations for the upper plate of the rheometer, and introducing a complex notation for Eqs. (A1) and (A2), the partial time derivative reduces to \( \partial /\partial t = i\omega = 2i\pi f_0 \), where i denotes the pure imaginary number and f 0 is the frequency of the sollicitation. Equation (A6) becomes:

$$ \left\{ \begin{gathered} \left[ {\left( {1 + i\omega \theta } \right)\sigma \prime_{rr} + \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{rr} }}{{\partial r}} - 2\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}\sigma \prime_{rr} + 2\theta V(t)f(r)\left( {\frac{2z}{{e^2 }}} \right)\sigma \prime_{rz} } \right] = 2\eta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr} \hfill \\ \left[ {\left( {1 + i\omega \theta } \right)\sigma \prime_{{\theta \theta }} + \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{{\theta \theta }} }}{{\partial r}} - 2\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r}\sigma \prime_{{\theta \theta }} - 2\theta \Omega (t)r\frac{dg}{dz}\sigma \prime_{{\theta z}} } \right] = 2\eta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r} \hfill \\ \left[ {\left( {1 + i\omega \theta } \right)\sigma \prime_{zz} + \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{zz} }}{{\partial r}}} \right] = 0 \hfill \\ \left[ {\left( {1 + i\omega \theta } \right)\sigma \prime_{{r\theta }} + \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{{r\theta }} }}{{\partial r}} - 2\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}\sigma \prime_{{r\theta }} + \theta V(t)f(r)\left( {\frac{2z}{{e^2 }}} \right)\sigma \prime_{{\theta z}} - \theta \Omega (t)r\frac{dg}{dz}\sigma \prime_{rz} } \right] = 0 \hfill \\ \left[ {\left( {1 + i\omega \theta } \right)\sigma \prime_{rz} + \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{rz} }}{{\partial r}} - \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{df}{dr}\sigma \prime_{rz} + \theta V(t)f(r)\left( {\frac{2z}{{e^2 }}} \right)\sigma \prime_{zz} } \right] = - 2\eta V(t)f(r)\left( {\frac{z}{{e^2 }}} \right) \hfill \\ \left[ {\left( {1 + i\omega \theta } \right)\sigma \prime_{{\theta z}} + \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)f(r)\frac{{\partial \sigma \prime_{{\theta z}} }}{{\partial r}} - \theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{{f(r)}}{r}\sigma \prime_{{\theta z}} - \theta \Omega (t)r\frac{dg}{dz}\sigma \prime_{zz} } \right] = \eta \Omega (t)r\frac{dg}{dz} \hfill \\ \end{gathered} \right. $$
(A7)

where Ω(t) = Ωexp(iωt) is imposed, and σ′(t) = σ′exp(i(ωt + φ)) and V(t) = Vexp(i(ωt + ψ)) are sinusoidal function with various time shift which are without interest in the following.

A-2.1 Particular case without expansion

When V(t) = 0, there is no radial expansion. Equation (A7) reduces to the well known equation of the plate/plate rheometer:

$$ \left\{ {\begin{array}{*{20}c} {\sigma \prime_{{\theta z}} = \eta \Omega (t)r\left( {\frac{{1 - i\omega \theta }}{{1 - \omega^2 \theta^2 }}} \right)\frac{dg}{dz}} \\ {\sigma \prime_{{\theta \theta }} = 2\eta \Omega^2 (t)r^2 \frac{{\theta \left( {1 - \omega^2 \theta^2 - 2i\omega \theta } \right)}}{{\left( {1 - \omega^2 \theta^2 } \right)^2 }}\left( {\frac{dg}{dz}} \right)^2 } \\ {\sigma \prime_{rr} = 0} \\ {\sigma \prime_{zz} = 0} \\ \end{array} } \right. $$

Then the mass balance equation implies that g = (z + e) / 2e [1]. In this case, the complex viscosity can be expressed by:

$$ \eta * = \frac{{\sigma_{{\theta z}} }}{{2\left( {\nabla_S u} \right)_{{\theta z}} }} = \frac{{\sigma \prime_{{\theta z}} }}{{2\left( {\nabla_S u} \right)_{{\theta z}} }} = \eta \prime - i\eta \prime \prime = \eta \left( {\frac{{1 - i\omega \theta }}{{1 + \omega^2 \theta^2 }}} \right) $$
(A8)

and the complex modulus by:

$$ G * = \omega \eta \prime \prime + i\omega \eta \prime = G\prime + iG\prime \prime $$
(A9)

such that:

$$ \begin{array}{*{20}c} {G\prime = \frac{\eta }{\theta }\left( {\frac{{\omega^2 \theta^2 }}{{1 + \omega^2 \theta^2 }}} \right)} \hfill & {\text{et}} \hfill & {G\prime \prime = \frac{\eta }{\theta }\left( {\frac{{\omega \theta }}{{1 + \omega^2 \theta^2 }}} \right)} \hfill \\ \end{array} $$
(A10)

A-2.2 General case

If V(t) is positive, the whole set of Eq. (A7) remains strongly coupled and we propose an analytical solution.

$$ \left\{ \begin{gathered} Z\left( {t,z} \right)\sigma \prime_{rr} + r\frac{{\partial \sigma \prime_{rr} }}{{\partial r}} - 2\sigma \prime_{rr} + 2\frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}r\sigma \prime_{rz} = \frac{{2\eta }}{\theta } \hfill \\ Z\left( {t,z} \right)\sigma \prime_{{\theta \theta }} + r\frac{{\partial \sigma \prime_{{\theta \theta }} }}{{\partial r}} - 2\sigma \prime_{{\theta \theta }} - 2\frac{{\Omega (t)}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}rR\frac{dg}{dz}\sigma \prime_{{\theta z}} = \frac{{2\eta }}{\theta } \hfill \\ Z\left( {t,z} \right)\sigma \prime_{zz} + r\frac{{\partial \sigma \prime_{zz} }}{{\partial r}} = 0 \hfill \\ Z\left( {t,z} \right)\sigma \prime_{{r\theta }} + r\frac{{\partial \sigma \prime_{{r\theta }} }}{{\partial r}} - 2\sigma \prime_{{r\theta }} + \frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}r\sigma \prime_{{\theta z}} - \frac{{\Omega (t)rR}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{dg}{dz}\sigma \prime_{rz} = 0 \hfill \\ Z(t,z)\sigma \prime_{rz} + r\frac{{\partial \sigma \prime_{rz} }}{{\partial r}} - \sigma \prime_{rz} + \frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}r\sigma \prime_{zz} = - \frac{\eta }{\theta }\frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}r \hfill \\ Z\left( {t,z} \right)\sigma \prime_{{\theta z}} + r\frac{{\partial \sigma \prime_{{\theta z}} }}{{\partial r}} - \sigma \prime_{{\theta z}} - \frac{{\Omega (t)}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}rR\frac{dg}{dz}\sigma \prime_{zz} = \frac{\eta }{\theta }\frac{{\Omega (t)}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{dg}{dz}rR \hfill \\ \end{gathered} \right. $$

where \( Z\left( {t,z} \right) = \frac{{R\left( {1 + i\omega \theta } \right)}}{{\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}} \ge 0 \)

  • Eq. (A7) gives:

$$ \sigma \prime_{zz} = A\left( {\frac{r}{R}} \right)^{{ - Z\left( {t,z} \right)}} $$

such that A = 0 because the stress has to remain finite for r➔0 and then \( \sigma \prime_{zz} = 0 \).

  • Eq. (A7) reduces in:

$$ \left( {Z\left( {t,z} \right) - 1} \right)\sigma \prime_{rz} + r\frac{{\partial \sigma \prime_{rz} }}{{\partial r}} = - \frac{\eta }{\theta }\frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}r $$

then

$$ \sigma \prime_{rz} = - \frac{\eta }{\theta }\frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{1}{{Z\left( {t,z} \right)}}r + B\left( {\frac{r}{R}} \right)^{{1 - Z\left( {t,z} \right)}} $$

such that B = 0 because this stress is zero on the symmetry axis.

  • Eq. (A7) reduces in:

$$ \left( {Z\left( {t,z} \right) - 1} \right)\sigma \prime_{{\theta z}} + r\frac{{\partial \sigma \prime_{{\theta z}} }}{{\partial r}} = \frac{\eta }{\theta }\frac{{\Omega (t)}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{dg}{dz}rR $$

then:

$$ \sigma \prime_{{\theta z}} = \frac{\eta }{\theta }\frac{{\Omega (t)}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{dg}{dz}R\frac{1}{{Z\left( {t,z} \right)}}r + C\left( {\frac{r}{R}} \right)^{{1 - Z\left( {t,z} \right)}} $$

such that C = 0 because this stress is zero on the symmetry axis.

  • Eq. (A7) becomes:

$$ \left( {Z\left( {t,z} \right) - 2} \right)\sigma \prime_{{r\theta }} + r\frac{{\partial \sigma \prime_{{r\theta }} }}{{\partial r}} = - \frac{{2\eta }}{\theta }\frac{{\Omega (t)}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{dg}{dz}R\frac{1}{{Z\left( {t,z} \right)}}r^2 $$

then

$$ \sigma \prime_{{r\theta }} = - \frac{{2\eta }}{\theta }\frac{{\Omega (t)}}{{V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{{\left( {\frac{2z}{{e^2 }}} \right)}}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}\frac{dg}{dz}R\frac{1}{{Z^2 \left( {t,z} \right)}}r^2 + D\left( {\frac{r}{R}} \right)^{{2 - Z\left( {t,z} \right)}} $$

such that D = 0 because this stress is zero on the symmetry axis.

  • Eq. (A7) becomes:

$$ \left( {Z\left( {t,z} \right) - 2} \right)\sigma \prime_{rr} + r\frac{{\partial \sigma \prime_{rr} }}{{\partial r}} = \frac{{2\eta }}{\theta }\left[ {1 + \frac{1}{{Z\left( {t,z} \right)}}\frac{{\left( {\frac{2z}{{e^2 }}} \right)^2 }}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)^2 }}r^2 } \right] $$

then

$$ \sigma \prime_{rr} = \frac{{2\eta }}{\theta }\left[ {\frac{1}{{Z\left( {t,z} \right) - 2}} + \frac{1}{{Z^2 \left( {t,z} \right)}}\frac{{\left( {\frac{2z}{{e^2 }}} \right)^2 }}{{\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)^2 }}r^2 } \right] + E\left( {\frac{r}{R}} \right)^{{2 - Z\left( {t,z} \right)}} $$

such that E = 0 due to the symmetry axis in r = 0.

  • Eq. (A7) becomes:

$$ \left( {Z\left( {t,z} \right) - 2} \right)\sigma \prime_{{\theta \theta }} + r\frac{{\partial \sigma \prime_{{\theta \theta }} }}{{\partial r}} = \frac{{2\eta }}{\theta }\left[ {1 + \frac{1}{{Z\left( {t,z} \right)}}\frac{{\Omega^2 (t)}}{{V^2 (t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)^2 }}\left( {\frac{dg}{dz}} \right)^2 R^2 r\,^2 } \right] $$

then

$$ \sigma \prime_{{\theta \theta }} = \frac{{2\eta }}{\theta }\left[ {\frac{1}{{Z\left( {t,z} \right) - 2}} + \frac{1}{{Z^2 \left( {t,z} \right)}}\frac{{\Omega^2 (t)}}{{V^2 (t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)^2 }}\left( {\frac{dg}{dz}} \right)^2 R^2 r^2 } \right] + F\left( {\frac{r}{R}} \right)^{{2 - Z\left( {t,z} \right)}} $$

such that F = 0 due to the symmetry axis in r = 0.

The stress tensor is then equal to:

$$ \sigma = \left[ {\begin{array}{*{20}c} {\frac{{2\eta }}{\theta }\left[ {\frac{{\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}{{R\left( {1 + i\omega \theta } \right) - 2\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}} + \frac{{\theta^2 }}{{\left( {1 + i\omega \theta } \right)^2 }}V(t)^2 \left( {\frac{2z}{{e^2 }}} \right)^2 \frac{{r^2 }}{{R^2 }}} \right] - p\prime } & { - 2\eta \theta \frac{{\Omega (t)}}{{\left( {1 + i\omega \theta } \right)^2 }}\left( {\frac{2z}{{e^2 }}} \right)\frac{dg}{dz}\frac{{V(t)}}{R}r^2 } & { - \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}V(t)\left( {\frac{2z}{{e^2 }}} \right)\frac{r}{R}} \\ {sym} & {\frac{{2\eta }}{\theta }\left[ {\frac{{\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}}{{R\left( {1 + i\omega \theta } \right) - 2\theta V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)}} + \theta^2 \frac{{\Omega^2 (t)}}{{\left( {1 + i\omega \theta } \right)^2 }}\left( {\frac{dg}{dz}} \right)^2 r^2 } \right] - p\prime } & {\frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\Omega (t)\frac{dg}{dz}r} \\ {sym} & {sym} & { - p\prime } \\ \end{array} } \right] $$

the stress balance equation reduces to:

$$ \begin{array}{*{20}c} {\begin{array}{*{20}c} {\nabla \cdot \sigma + \rho (t)g = 0}{\text{then:}} \\ \end{array} } \\ {\left\{ {\begin{array}{*{20}c} { - \frac{{\partial p\prime }}{{\partial r}} + \frac{{2\eta }}{\theta }\frac{{\theta^2 }}{{\left( {1 + i\omega \theta } \right)^2 }}V(t)^2 \left( {\frac{2z}{{e^2 }}} \right)^2 \frac{2r}{{R^2 }} - \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}V(t)\left( {\frac{2}{{e^2 }}} \right)\frac{r}{R} + \frac{{2\eta }}{\theta }\frac{{\theta^2 }}{{\left( {1 + i\omega \theta } \right)^2 }}\left[ {V(t)^2 \left( {\frac{2z}{{e^2 }}} \right)^2 - R^2 \Omega^2 (t)\left( {\frac{dg}{dz}} \right)^2 } \right]\frac{r}{{R^2 }} = 0} \hfill \\ {\frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\Omega (t)\frac{{d^2 g}}{{dz^2 }}r - 8\eta \theta \frac{{\Omega (t)}}{{\left( {1 + i\omega \theta } \right)^2 }}\left( {\frac{2z}{{e^2 }}} \right)\frac{dg}{dz}\frac{{V(t)}}{R}r = 0} \hfill \\ { - \frac{{\partial p\prime }}{{\partial z}} - \frac{{2\eta }}{{\left( {1 + i\omega \theta } \right)}}V(t)\left( {\frac{2z}{{e^2 }}} \right)\frac{1}{R} - \rho (t)g = 0} \hfill \\ \end{array} } \right.} \\ \end{array} $$

where η, θ and ρ explicitely depend on time. From the second equation we obtain:

$$ \frac{{d^2 g}}{{dz^2 }} = \frac{{16\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{1}{{e^2 }}\frac{{V(t)}}{R}z\frac{dg}{dz} $$

which is equivalent to:

$$ \frac{dg}{dz} = Ke^{{\frac{{8\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{{V(t)}}{R}\frac{{z^2 }}{{e^2 }}}} $$

then:

$$ g(z) = K\int_{- e}^z {e^{{\frac{{8\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{{V(t)}}{R}\frac{{z^2 }}{{e^2 }}}} dz} $$

with g(z = −e) = 0 and g(z = e) = 1 we have:

$$ g(z) = \frac{{\int_{- e}^z {e^{{\frac{{8\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{{V(t)}}{R}\frac{{z^2 }}{{e^2 }}}} dz} }}{{\int_{- e}^e {e^{{\frac{{8\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{{V(t)}}{R}\frac{{z^2 }}{{e^2 }}}} dz} }} $$
(A11)

When V(t) = 0, one has g(z) = (z + e)/2e (see Section A-2.1).

From Eq. (A4), we have determined that the maximal value reached by the radial velocity is of about 2 mm.s−1. We have then investigated the influence of V(t) in the range [0,10]mm.s−1.

Figure (16) presents g(z) profile as a function of z/e for various V(t) values and for θ = 1 s, e = 1 mm and R = 50 mm (we have taken characteristic values for R and e in order to test the influence of the function g(z)).

Fig. 16
figure 16

g(z) profile with respect to z/e as a function of V(t) for θ = 1 s, e = 1 mm and R = 50 mm: a f 0 = 10−2 Hz, b f 0 = 5.10−2 Hz, c f 0 = 10−1 Hz, d f 0 = 1 Hz

It can be noticed that, in the range of experimental radial velocity (about 1 mm.s−1), the profile g(z) is quasi linear such that the shear rate remains homogeneous with respect to z for θ = 1 s. This choice of θ is purely arbitrary but Eq. (A7) gives the following results:

  • for f 0 ≥ 1 Hz (corresponding to our experimental conditions), the profile g(z) remains linear for all value of θ,

  • for 1 Hz ≥ f 0 ≥ 10 −5 Hz, the profile g(z) remains linear only if θ is lower than 10−1 s.

As a consequence, for the experimental chosen frequency (2 Hz), the classical viscoelastic analysis can be used during the whole solidification process.

Equation (A7) proves that:

$$ p\prime \left( {r,z,t} \right) = P\left( {r,t} \right) - \frac{{2\eta }}{{\left( {1 + i\omega \theta } \right)}}V(t)\left( {\frac{{z^2 }}{{e^2 }}} \right)\frac{1}{R} - \rho (t)gz $$

where P is a function which need to be determined.

Equation (A7) then gives:

$$ \frac{{\partial p\prime }}{{\partial r}} = \frac{{\partial P}}{{\partial r}}\left( {r,t} \right) = - \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}V(t)\left( {\frac{2}{{e^2 }}} \right)\frac{r}{R} + \frac{{2\eta }}{\theta }\frac{{\theta^2 }}{{\left( {1 + i\omega \theta } \right)^2 }}\left[ {3V(t)^2 \left( {\frac{2z}{{e^2 }}} \right)^2 - R^2 \Omega^2 (t)\left( {\frac{dg}{dz}} \right)^2 } \right]\frac{r}{{R^2 }} $$

then:

$$ P\left( {r,t} \right) = \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\left[ {\frac{\theta }{{\left( {1 + i\omega \theta } \right)}}\left( {3V(t)^2 \left( {\frac{2z}{{e^2 }}} \right)^2 - R^2 \Omega^2 (t)\left( {\frac{dg}{dz}} \right)^2 } \right)\frac{{r^2 }}{{R^2 }} - V(t)\frac{1}{{e^2 }}\frac{{r^2 }}{R}} \right] + Q(t) $$

then

$$ p\prime \left( {r,z,t} \right) = \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\left[ {\frac{\theta }{{\left( {1 + i\omega \theta } \right)}}\left( {3V(t)^2 \left( {\frac{2z}{{e^2 }}} \right)^2 - R^2 \Omega^2 (t)\left( {\frac{dg}{dz}} \right)^2 } \right)\frac{{r^2 }}{{R^2 }} - V(t)\frac{1}{{e^2 }}\frac{{r^2 }}{R}} \right] - \frac{{2\eta }}{{\left( {1 + i\omega \theta } \right)}}V(t)\left( {\frac{{z^2 }}{{e^2 }}} \right)\frac{1}{R} - \rho (t)gz + Q(t) $$

Identification of Q(t) : as a first approximation, we suppose that the mixture outside the rheometer can freely expand such that σ⋅n = 0 (n is the normal to the free surface of the mixture, which is varying between the midplane of the rheometer and the plates). We decide to impose the boundary condition at the plate periphery (see Fig. 15). So we have:

$$ \begin{array}{*{20}c} {\sigma_{zz} \left( {R,e} \right) = - \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\left[ {\frac{\theta }{{\left( {1 + i\omega \theta } \right)}}\left( {3V(t)^2 \left( {\frac{2}{e}} \right)^2 - R^2 \Omega^2 (t)\left( {\frac{dg}{dz}(e)} \right)^2 } \right) - V(t)\frac{1}{{e^2 }}R} \right] + \frac{{2\eta }}{{\left( {1 + i\omega \theta } \right)}}V(t)\frac{1}{R} + \rho (t)ge - Q(t) = 0} \hfill \\ {Q(t) = - \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\left[ {\frac{\theta }{{\left( {1 + i\omega \theta } \right)}}\left( {3V(t)^2 \left( {\frac{2}{e}} \right)^2 - R^2 \Omega^2 (t)\left( {\frac{dg}{dz}(e)} \right)^2 } \right) - V(t)\frac{1}{{e^2 }}R} \right] + \frac{{2\eta }}{{\left( {1 + i\omega \theta } \right)}}V(t)\frac{1}{R} + \rho (t)ge} \hfill \\ \end{array} $$

then:

$$ \begin{array}{*{20}c} {p\prime \left( {r,z,t} \right) = \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\left[ {\frac{\theta }{{\left( {1 + i\omega \theta } \right)}}\left( {3V(t)^2 \left( {\frac{2}{{e^2 }}} \right)^2 \left( {\frac{{z^2 r^2 }}{{R^2 }} - e^2 } \right) - \Omega^2 (t)\left( {\frac{dg}{dz}} \right)^2 r^2 + \Omega^2 (t)\left( {\frac{dg}{dz}(e)} \right)^2 R^2 } \right) - V(t)\frac{1}{{e^2 }}\frac{{R^2 - r^2 }}{R}} \right]} \\ { - \frac{{2\eta }}{{\left( {1 + i\omega \theta } \right)}}V(t)\left( {1 - \frac{{z^2 }}{{e^2 }}} \right)\frac{1}{R} - \rho (t)g\left( {z - e} \right)} \\ \end{array}$$

When θ = 0 (purely viscous case), p′ tends toward a limit value equal to:

$$ p\prime \left( {r,z,t} \right) = - \eta V(t)\frac{{R^2 - r^2 + 2\left( {e^2 - z^2 } \right)}}{{e^2 R}} - \rho (t)g\left( {z - e} \right) $$

in this case p′ depends only on V(t). If there is no radial expansion, this pressure is only equal to the gravity term (2 Pa) which may be neglectible.

A-2.3 Evaluation of flow and forces

Knowing the normal force and the torque at each time t, as well the flow rate Q v escaping from the rheometer, it is possible to follow the evolution of viscosity η and relaxation time θ and then to have an estimation of the chemio-rheological couplings (Eqs. (8) and (9)):

  • Flow

$$ Q_V (t) = \int\limits_{\Sigma } {u.nds} = \frac{{8\pi }}{3}eRV(t)f\left( {r = R} \right) = \frac{{8\pi }}{3}eRV(t) $$
(A12)
  • Normal force

$$ F_N (t) = - \int\limits_{Base} {\sigma .nds} = - 2\pi \int_0^R {\sigma_{zz} \left( {z = + e} \right)rdr = 2\pi \int_0^R {p\prime \left( {r,z = + e,t} \right)rdr} } $$

Then:

$$ F_N (t) = \frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\left[ {\frac{\theta }{{\left( {1 + i\omega \theta } \right)}}\left( {\frac{\pi }{2}R^4 \Omega^2 (t)\left( {\frac{1}{{\int_{- e}^e {e^{{\frac{{3\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{1}{{\pi eR^2 }}Q_V (t)\left( {\frac{{z^2 }}{{e^2 }} - 1} \right)}} dz} }}} \right)^2 - \frac{27}{{32\pi e^4 }}Q_V^2 (t)} \right) - \frac{3}{16e}Q_V (t)\frac{{R^2 }}{{e^2 }}} \right] $$
(A13)

Note also that in the case where Q V (t) = 0, we find the well known expression of the normal force:

$$ F_N (t) = F_N^0 (t) = \frac{\pi }{2}\frac{{\eta \theta }}{{\left( {1 + i\omega \theta } \right)^2 }}\left( {\frac{{\Omega (t)}}{2e}} \right)^2 R^4 $$

or using real notations,

$$ F_N (t) = F_N^0 (t) = \frac{\pi }{2}\eta \theta \frac{{1 - \omega^2 \theta^2 }}{{\left( {1 + \omega^2 \theta^2 } \right)^2 }}\left( {\frac{{\Omega (t)}}{2e}} \right)^2 R^4 $$

The normal force is then non-zero if θ is not zero.

  • Torque

$$ C(t) = \int\limits_{Base} {x \times \sigma .nds} = 2\pi \int_0^R {r\sigma_{{\theta z}} \left( {z = + e} \right)rdr} = 2\pi \int_0^R {\frac{\eta }{{\left( {1 + i\omega \theta } \right)}}\Omega (t)\frac{1}{{\int_{- e}^e {e^{{\frac{{3\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{{Q_V (t)}}{{\pi eR^2 }}\left( {\frac{{z^2 }}{{e^2 }} - 1} \right)}} dz} }}r^3 dr} $$

then:

$$ C(t) = \frac{\pi }{2}\frac{{\eta (t)}}{{\left( {1 + i\omega \theta } \right)}}\Omega (t)\frac{1}{{\int_{- e}^e {e^{{\frac{{3\theta }}{{\left( {1 + i\omega \theta } \right)}}\frac{{Q_V (t)}}{{\pi eR^2 }}\left( {\frac{{z^2 }}{{e^2 }} - 1} \right)}} dz} }}R^4 $$
(A14)

Note also that in the case where Q V (t) = 0, we find the well known form of the torque:

$$ C(t) = C^0 (t) = \frac{\pi }{2}\frac{{\eta (t)}}{{\left( {1 + i\omega \theta } \right)}}\Omega (t)\frac{1}{2e}R^4 $$

or using real notations,

$$ C(t) = C^0 (t) = \frac{\pi }{2}\eta (t)\frac{{1 - \omega \theta }}{{\left( {1 + \omega^2 \theta^2 } \right)}}\Omega (t)\frac{1}{2e}R^4 $$

which is the classical equation used for incompressible materials.

Recording C and Fn has a function of time as well the flow rate escaping the rheometer, it would be then possible coupling Eqs. (A7), (A8) and (4) to derive viscosity and mean relaxation time as a function of time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouayad, R., Bikard, J. & Agassant, JF. Compressible flow in a plate/plate rheometer: application to the experimental determination of reactive expansion’s models parameters for polyurethane foam. Int J Mater Form 2, 243–260 (2009). https://doi.org/10.1007/s12289-009-0408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-009-0408-x

Keywords

Navigation