Skip to main content
Log in

Numerical simulation of spin coating processes involving functionalised Carbon nanotube suspensions

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper reports the numerical simulation of spin coating for functionalised Carbon Nanotube (CNT) suspensions. Spin coating is a process commonly used to deposit uniform thin films onto flat substrates by means of high rotation velocity and centrifugal force. The functionalised CNTs modelled in this study were chemically treated in a way such that aggregation was prevented through electrostatic repulsion between CNTs. The functionalised CNTs in the semi-dilute suspensions can be modelled as rigid fibres with their orientation dictated by the flow of the solvent. The evolution of CNT orientations was simulated using a pre-averaged kinetic theory with an appropriate rotary diffusion coefficient accounting for randomising events. A Natural Element strategy with an updated Lagrangian framework was implemented to solve the free-surface problem involving large domain deformation and to avoid numerical problems associated with Finite Element modelling. The model reported herein couples micro-scale CNT orientation with the macroscopic suspension kinematics and it offers important insights in relation to the final properties of spin-coated CNT films as well as the processing behaviour of CNT suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758

    Article  MATH  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  • Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  • Cueto E, Doblaré M, Gracia L (2000) Imposing essential boundary conditions in the natural element method by means of density-scaled α-shapes. Int J Numer Methods Eng 49–4:519–546

    Article  Google Scholar 

  • Cueto E, Martínez MA, Doblaré M (2001) El método de los Elementos Naturales en Elasticidad compresible y cuasi-incompresible. Boletín Técnico del Instituto de Materiales y Modelos Estructurales. Universidad Central de Venezuela 39 (In Spanish)

  • Cueto E, Sukumar N, Calvo B, Martínez MA, Cegoñino J, Doblaré M (2003) Overview and recent advances in natural neighbour Galerkin methods. Arch Comput Methods Eng 10(4):307–384

    Article  MATH  Google Scholar 

  • Donea J (1983) Arbitrary Lagrangian-Eulerian finite element methods. In: Belytschko T, Hughes TJR (eds) Computer methods for transient analyses. Elsevier, Amsterdam, pp 474–516

    Google Scholar 

  • Edelsbrunner H, Mücke E (1994) Three dimensional alpha shapes. ACM Trans Graph 13:43–72

    Article  MATH  Google Scholar 

  • Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating shell. J Appl Phys 29(5):858–863

    Article  MATH  MathSciNet  Google Scholar 

  • Folgar F, Tucker CL III (1984) Orientation behaviour of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  Google Scholar 

  • González D, Cueto E, Doblaré M (2004a) Volumetric locking in natural neighbour galerkin methods. Int J Numer Methods Eng 61(4):611–632

    Article  Google Scholar 

  • Gonzalez D, Cueto E, Martinez MA, Doblare M (2004b) Numerical integration in natural neighbour galerkin methods. Int J Numer Methods Eng 60(12):2077–2104

    Article  MATH  Google Scholar 

  • González D, Cueto E, Chinesta F, Doblaré M (2007) A natural element updated Lagrangian strategy for free-surface fluid dynamics. J Comput Phys 223(1):127–150

    Article  MATH  MathSciNet  Google Scholar 

  • Hiyoshi H, Sugihara K (1999) Two generalizations of an interpolant based on Voronoi diagrams. Int J Shape Model 5(2):219–231

    Article  Google Scholar 

  • Iijima S (1991) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford

    Google Scholar 

  • Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 38:1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  • Martínez MA, Cueto E, Doblaré M, Chinesta F (2003) Fixed mesh and meshfree techniques in the numerical simulation of injection processes involving short fiber suspensions. J Non-Newton Fluid Mech 115:51–78

    Article  MATH  Google Scholar 

  • Martinez MA, Cueto E, Alfaro I, Doblare M, Chinesta F (2004) Updated Lagrangian free surface flow simulations with natural neighbour galerkin methods. Int J Numer Methods Eng 60(13):2105–2129

    Article  MATH  Google Scholar 

  • Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293:5527

    Article  Google Scholar 

  • Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Mackley M, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multi-wall carbon nanotubesorientation behaviour of fibers in concentrated suspensions. J Rheol 50:599–610

    Article  Google Scholar 

  • Sibson R (1980) A vector identity for the dirichlet tesselation. Math Proc Camb Philos Soc 87:151–155

    Article  MATH  MathSciNet  Google Scholar 

  • Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data. Wiley, New York, pp 21–36

    Google Scholar 

  • Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5):839–887

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique. Int J Numer Methods Eng 33:1331–1364

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cueto.

Additional information

Work partially supported by the Spanish Ministry of Education and Science through grant number CICYT-DPI2005-08727-C02-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cueto, E., Ma, A.W.K., Chinesta, F. et al. Numerical simulation of spin coating processes involving functionalised Carbon nanotube suspensions. Int J Mater Form 1, 89–99 (2008). https://doi.org/10.1007/s12289-008-0377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-008-0377-5

Keywords

Navigation