Skip to main content
Log in

MiR-34c-5p Inhibition Affects Bax/Bcl2 Expression and Reverses Bortezomib Resistance in Multiple Myeloma Cells

  • ORIGINAL ARTICLE
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Developing resistance to anticancer drugs complicates the clinical treatment of multiple myeloma patients. Previous studies revealed a link between the unfolded protein response (UPR) and miRNAs with acquired drug resistance. This study aimed to determine the expression profile of XBP1, hsa-miR-34c-5p, hsa-miR-214, and hsa-miR-30c-2* in resistant and sensitive multiple myeloma cell lines to a proteasome inhibitor, bortezomib. After establishing bortezomib-resistant cells, the expression level of XBP1, hsa-miR-214, hsa-miR-34c-5p, and hsa-miR-30c-2* in both cell lines were assessed by qRT-PCR. Hsa-miR-34c-5p was suppressed to study its effect on the expression profile of Bax/Bcl-2. Statistical analysis was done by t-test in two clinically resistant and sensitive cells to bortezomib. MTT assay confirmed the creation of the resistant cell line. The qRT-PCR screening showed a significant difference between XBP1 and miR-34c-5p levels in resistant and sensitive cells. Following hsa-miR-34c-5p blockage, while Bax was overexpressed, Bcl-2 expression was reduced in the resistant cell line, overcoming cells resistant to bortezomib. Our findings demonstrate miR-34c-5p is differentially expressed between bortezomib-sensitive and -resistant MM cells. Inhibiting miR-34c-5p re-sensitized resistant cells to bortezomib by modulating Bax/Bcl-2 expression, suggesting this miRNA regulates apoptosis and drug resistance and may be a promising therapeutic target for overcoming proteasome inhibitor resistance in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. García-Ortiz A, Rodríguez-García Y, Encinas J, Maroto-Martín E, Castellano E, Teixidó J et al (2021) The role of tumor microenvironment in multiple myeloma development and progression. Cancers 13(2):217

    Article  PubMed  PubMed Central  Google Scholar 

  2. Podar K, Tai Y-T, Lin BK, Narsimhan RP, Sattler M, Kijima T et al (2002) Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with β1 integrin- and phosphatidylinositol 3-kinase-dependent PKCα Activation*. J Biol Chem 277(10):7875–7881

    Article  CAS  PubMed  Google Scholar 

  3. Hussain A, Almenfi HF, Almehdewi AM, Hamza MS, Bhat MS, Vijayashankar NP (2019) Laboratory features of newly diagnosed multiple myeloma patients. Cureus. 11(5):e4716

    PubMed  PubMed Central  Google Scholar 

  4. Allmeroth K, Horn M, Kroef V, Miethe S, Müller R-U, Denzel MS (2021) Bortezomib resistance mutations in PSMB5 determine response to second-generation proteasome inhibitors in multiple myeloma. Leukemia 35(3):887–892

    Article  CAS  PubMed  Google Scholar 

  5. Podar K, Gouill SL, Zhang J, Opferman JT, Zorn E, Tai YT et al (2008) A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 27(6):721–731

    Article  CAS  PubMed  Google Scholar 

  6. Pinto V, Bergantim R, Caires HR, Seca H, Guimarães JE, Vasconcelos MH (2020) Multiple myeloma: available therapies and causes of drug resistance. Cancers 12(2):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Besse L, Besse A, Mendez-Lopez M, Vasickova K, Sedlackova M, Vanhara P et al (2019) A metabolic switch in proteasome inhibitor-resistant multiple myeloma ensures higher mitochondrial metabolism, protein folding and sphingomyelin synthesis. Haematologica 104(9):e415–e419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi W, Chen Z, Li L, Liu H, Zhang R, Cheng Q et al (2019) Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. J Cancer 10(9):2035–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chalmers F, Mogre S, Son J, Blazanin N, Glick AB (2019) The multiple roles of the unfolded protein response regulator IRE1α in cancer. Mol Carcinog 58(9):1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nikesitch N, Lee JM, Ling S, Roberts TL (2018) Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin Translat Immunol 7(1):e1007

    Article  Google Scholar 

  11. Shirazi F, Jones RJ, Singh RK, Zou J, Kuiatse I, Berkova Z et al (2020) Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci 117(33):20004–20014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park S-M, Kang T-I, So J-S (2021) Roles of XBP1s in transcriptional regulation of target genes. Biomedicines 9(7):791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonnella R, Gilardini Montani MS, Guttieri L, Romeo MA, Santarelli R, Cirone M (2021) IRE1 Alpha/XBP1 axis sustains primary effusion lymphoma cell survival by promoting cytokine release and STAT3 activation. Biomedicines 9(2):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  PubMed  Google Scholar 

  15. Mo Y, Liu B, Qiu S, Wang X, Zhong L, Han X et al (2020) Down-regulation of microRNA-34c-5p alleviates neuropathic pain via the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve. J Neurochem 154(3):301–315

    Article  CAS  PubMed  Google Scholar 

  16. Bartoszewska S, Cabaj A, Dąbrowski M, Collawn JF, Bartoszewski R (2019) miR-34c-5p modulates X-box-binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response. FASEB J 33(10):11541–11554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrd AE, Aragon IV, Brewer JW (2012) MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J Cell Biol 196(6):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duan Q, Wang X, Gong W, Ni L, Chen C, He X et al (2012) ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer. PLoS ONE 7(2):e31518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu X, Yan H, Zhang L, Liu J, Huang Y, Cheng H (2020) Up-regulation of miR-34c-5p inhibits nasopharyngeal carcinoma cells by mediating NOTCH1. Biosci Rep. 40(6):BSR20200302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacques C, Tesfaye R, Lavaud M, Georges S, Baudhuin M, Lamoureux F et al (2020) Implication of the p53-related miR-34c, -125b, and -203 in the osteoblastic differentiation and the malignant transformation of bone sarcomas. Cells 9(4):810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Louis KS, Siegel AC (2011) Cell viability analysis using trypan blue: manual and automated methods. Springer, Mammalian cell viability, pp 7–12

    Google Scholar 

  22. Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG (2017) The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev 36(4):561–584

    Article  CAS  PubMed  Google Scholar 

  23. Borjan B, Kern J, Steiner N, Gunsilius E, Wolf D, Untergasser G (2020) Spliced XBP1 levels determine sensitivity of multiple myeloma cells to proteasome inhibitor bortezomib independent of the unfolded protein response mediator GRP78. Front Oncol. 9:1530

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cagle P, Niture S, Srivastava A, Ramalinga M, Aqeel R, Rios-Colon L et al (2019) MicroRNA-214 targets PTK6 to inhibit tumorigenic potential and increase drug sensitivity of prostate cancer cells. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  25. Han W, Cui H, Liang J, Su X (2020) Role of MicroRNA-30c in cancer progression. J Cancer 11(9):2593–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ostadrahimi S, Fayaz S, Parvizhamidi M, Abedi-Valugerdi M, Hassan M, Kadivar M et al (2018) Downregulation of miR-1266-5P, miR-185-5P and miR-30c-2 in prostatic cancer tissue and cell lines. Oncol Lett 15(5):8157–8164

    PubMed  PubMed Central  Google Scholar 

  27. Duan Q, Chen C, Yang L, Li N, Gong W, Li S et al (2015) MicroRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. J Transl Med 13(1):1–11

    Article  Google Scholar 

  28. Yuan X, Ma R, Yang S, Jiang L, Wang Z, Zhu Z, Li H (2019) miR-520g and miR-520h overcome bortezomib resistance in multiple myeloma via suppressing APE1. Cell Cycle 18(14):1660–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tu Y, Hu Y (2021) MiRNA-34c-5p protects against cerebral ischemia/reperfusion injury: involvement of anti-apoptotic and anti-inflammatory activities. Metab Brain Dis 36(6):1341–1351

    Article  CAS  PubMed  Google Scholar 

  30. Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8(2):121–132

    Article  CAS  PubMed  Google Scholar 

  31. Touzeau C, Maciag P, Amiot M, Moreau P (2018) Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia 32(9):1899–1907

    Article  CAS  PubMed  Google Scholar 

  32. Amodio N, Di Martino MT, Foresta U, Leone E, Lionetti M, Leotta M, Gullà AM, Pitari MR, Conforti F, Rossi MJ, Agosti V (2012) miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis 3(11):e436-439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Ahvaz Jundishapur University of Medical Sciences Grant No. CMRC-9903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Taheri.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

This study was approved by the ethics committee of Ahvaz Jundishapur University of Medical Sciences (Ethical code: IR.AJUMS.REC.1399.178).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matour, E., Asadi, Z.T., Deilami, A.A. et al. MiR-34c-5p Inhibition Affects Bax/Bcl2 Expression and Reverses Bortezomib Resistance in Multiple Myeloma Cells. Indian J Hematol Blood Transfus (2024). https://doi.org/10.1007/s12288-024-01742-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12288-024-01742-w

Keywords

Navigation