Skip to main content
Log in

Effects of AGEs, sRAGE and HMGB1 on Clinical Outcomes in Multiple Myeloma

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

A Correction to this article was published on 18 January 2023

This article has been updated

Abstract

Purpose

The receptor for advanced glycation end products (RAGE) upregulated during the onset and progression of cancer and bone-related pathologies. In this study, we aimed to investigate the role of serum advanced glycation end products (AGEs), soluble RAGE (sRAGE) and high mobility group box 1 (HMGB1), in multiple myeloma (MM).

Methods

AGEs, sRAGE and HMGB1 concentrations of 54 newly diagnosed MM patients and 30 healthy volunteers were measured by ELISA. The estimations were done only once at diagnosis. The medical records of the patients were evaluated.

Results

There was no significant difference between the AGEs and sRAGE levels between the patient and control groups (p = 0.273, p = 0.313). In ROC analysis, a HMGB1 cutoff value of > 9170 pg/ml accurately discriminated MM patients (AUC = 0.672, 95% CI 0.561–0.77, p = 0.0034). AGEs level was found to be significantly higher in early-stage disease and HMGB1 in advanced disease (p = 0.022, p = 0.026). High HMGB1 levels were detected in patients whose with better first-line treatment response (p = 0.019). At 36 months, 54% of patients with low AGE were alive, compared to 79% of patients with high AGE (p = 0.055). Patients with high HMGB1 levels tended to have a longer PFS (median 43 mo [95% CI; 20.68–65.31] ) compared to patients with low HMGB1 levels (median 25 mo [95% CI; 12.39–37.6], p = 0.054).

Conclusion

In this study, a significant elevation of serum HMGB1 level was found in MM patients. In addition, the positive effects of RAGE ligands on treatment response and prognosis were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Available upon request from the corresponding author.

Code Availability

Not available.

Change history

References

  1. Plotkin LI, Essex AL, Davis HM (2019) RAGE Signaling in Skeletal Biology. Curr Osteoporos Rep. https://doi.org/10.1007/s11914-019-00499-w

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kay AM, Simpson CL (2016) The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. J Diabetes Res. https://doi.org/10.1155/2016/6809703. Stewart JA Jr.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Waghela BN, Vaidya FU, Ranjan K, Chhipa AS, Tiwari BS, Pathak C (2021) AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol Cell Biochem. https://doi.org/10.1007/s11010-020-03928-y

    Article  PubMed  Google Scholar 

  4. Bongarzone S, Savickas V, Luzi F, Gee AD (2017) Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem. https://doi.org/10.1021/acs.jmedchem.7b00058

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galliera E, Marazzi MG, Vianello E, Drago L, Luzzati A, Bendinelli P, Maroni P, Tacchini L, Desiderio MA, Corsi Romanelli MM (2016) Circulating sRAGE in the diagnosis of osteolytic bone metastasis. J Biol Regul Homeost Agents 30:1203–1208

    CAS  PubMed  Google Scholar 

  6. Schmidt AM, Yan SD, Yan SF, Stern DM (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta. https://doi.org/10.1016/s0167-4889(00)00087-2

    Article  PubMed  Google Scholar 

  7. Dariya B, Nagaraju GP (2020) Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov Today. https://doi.org/10.1016/j.drudis.2020.07.003

    Article  PubMed  Google Scholar 

  8. Turner DP (2017) The Role of Advanced Glycation End-Products in Cancer Disparity. Adv Cancer Res. https://doi.org/10.1016/bs.acr.2016.08.001

    Article  PubMed  Google Scholar 

  9. Yuan S, Liu Z, Xu Z, Liu J, Zhang J (2020) High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol. https://doi.org/10.1186/s13045-020-00920-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhong H, Li X, Zhou S, Jiang P, Liu X, Ouyang M, Nie Y, Chen X, Zhang L, Liu Y, Tao T, Tang J (2020) Interplay between RAGE and TLR4 Regulates HMGB1-Induced Inflammation by Promoting Cell Surface Expression of RAGE and TLR4. J Immunol. https://doi.org/10.4049/jimmunol.1900860

    Article  PubMed  Google Scholar 

  11. Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX (2010) HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology. https://doi.org/10.1016/j.imbio.2009.11.001

    Article  PubMed  Google Scholar 

  12. Rojas A, Delgado-López F, Perez-Castro R, Gonzalez I, Romero J, Rojas I, Araya P, Añazco C, Morales E, Llanos J (2016) HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. https://doi.org/10.1007/s13277-015-3940-y

    Article  PubMed  Google Scholar 

  13. Wild CA, Bergmann C, Fritz G, Schuler P, Hoffmann TK, Lotfi R, Westendorf A, Brandau S, Lang S (2012) HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. Int Immunol. https://doi.org/10.1093/intimm/dxs051

    Article  PubMed  Google Scholar 

  14. Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S (2014) HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-13-2347

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuniyasu H, Chihara Y, Takahashi T (2003) Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep 10:445–448

    PubMed  Google Scholar 

  16. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62:4805–4811

    CAS  PubMed  Google Scholar 

  17. Bartling B, Hofmann HS, Weigle B, Silber RE, Simm A (2005) Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis. https://doi.org/10.1093/carcin/bgh333

    Article  PubMed  Google Scholar 

  18. Riuzzi F, Sorci G, Donato R (2006) The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem. https://doi.org/10.1074/jbc.M509436200

    Article  PubMed  Google Scholar 

  19. Greenlee RT, Murray T, Bolden S, Wingo PA, Cancer statistics (2000) CA Cancer J Clin. 2000; https://doi.org/10.3322/canjclin.50.1.7

  20. Yang S, Pinney SM, Mallick P, Ho SM, Bracken B, Wu T (2015) Impact of Oxidative Stress Biomarkers and Carboxymethyllysine (an Advanced Glycation End Product) on Prostate Cancer: A Prospective Study. Clin Genitourin Cancer. https://doi.org/10.1016/j.clgc.2015.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  21. Omofuma OO, Turner DP, Peterson LL, Merchant AT, Zhang J, Steck SE (2020) Dietary Advanced Glycation End-products (AGE) and Risk of Breast Cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Cancer Prev Res (Phila). https://doi.org/10.1158/1940-6207.CAPR-19-0457

    Article  PubMed  Google Scholar 

  22. Korwar AM, Bhonsle HS, Chougale AD, Kote SS, Gawai KR, Ghole VS, Koppikar CB, Kulkarni MJ (2012) Analysis of AGE modified proteins and RAGE expression in HER2/neu negative invasive ductal carcinoma. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2012.02.039

    Article  PubMed  Google Scholar 

  23. Menini S, Iacobini C (2018) The advanced glycation end-product Nϵ-carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. J Pathol. https://doi.org/10.1002/path.5072. de Latouliere LManni I, Ionta V, Blasetti Fantauzzi C, Pesce C, Cappello P, Novelli F, Piaggio G, Pugliese G

    Article  PubMed  Google Scholar 

  24. Gangemi S, Allegra A, Alonci A, Cristani M, Russo S, Speciale A, Penna G, Spatari G, Cannavò A, Bellomo G, Musolino C (2012) Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions. Inflamm Res. https://doi.org/10.1007/s00011-012-0498-7

    Article  PubMed  Google Scholar 

  25. Allegra A, Musolino C, Pace E, Innao V (2019) Evaluation of the AGE/sRAGE Axis in Patients with Multiple Myeloma. Antioxid (Basel). https://doi.org/10.3390/antiox8030055. Di Salvo EFerraro M, Casciaro M, Spatari G, Tartarisco G, Allegra AG, Gangemi S

    Article  Google Scholar 

  26. Katz J, Moreb J, Baitinger C, Singer C, Caudle RM (2017) Advanced glycation endproducts (AGEs) in saliva of patients with multiple myeloma - a pilot study. Leuk Lymphoma. https://doi.org/10.1080/10428194.2017.1344845

    Article  PubMed  Google Scholar 

  27. Dong XN, Qin A, Xu J, Wang X (2011) In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone. https://doi.org/10.1016/j.bone.2011.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  28. Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P (2007) Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem. https://doi.org/10.1074/jbc.M610536200

    Article  PubMed  Google Scholar 

  29. Li Z, Li C, Zhou Y, Chen W, Luo G, Zhang Z, Wang H, Zhang Y, Xu D, Sheng P (2016) Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00309.2015

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meng HZ, Zhang WL, Liu F, Yang MW (2015) J Biol Chem. https://doi.org/10.1074/jbc.M115.669499. Advanced Glycation End Products Affect Osteoblast Proliferation and Function by Modulating Autophagy Via the Receptor of Advanced Glycation End Products/RafProtein/Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase/Extracellular Signal-regulated Kinase (RAGE/Raf/MEK/ERK) Pathway

  31. Allegra A, Pace E, Tartarisco G, Innao V (2020) Changes in Serum Interleukin-8 and sRAGE Levels in Multiple Myeloma Patients. Anticancer Res. https://doi.org/10.21873/anticanres.14086. DI Salvo EAllegra AG, Ferraro M, Musolino C, Gangemi S

    Article  PubMed  Google Scholar 

  32. Aglago EK, Rinaldi S, Freisling H, Jiao L, Hughes DJ, Fedirko V, Schalkwijk CG, Weiderpass E, Dahm CC, Overvad K, Eriksen AK, Kyrø C, Boutron-Ruault MC, Rothwell JA, Severi G, Katzke V, Kühn T, Schulze MB, Aleksandrova K, Masala G, Krogh V, Panico S, Tumino R, Naccarati A, Bueno-de-Mesquita B (2021) Soluble Receptor for Advanced Glycation End-products (sRAGE) and Colorectal Cancer Risk: A Case-Control Study Nested within a European Prospective Cohort. Cancer Epidemiol Biomarkers Prev. https://doi.org/10.1158/1055-9965.EPI-20-0855. van Gils CHSandanger TM, Gram IT, Skeie G, Quirós JR, Jakszyn P, Sánchez MJ, Amiano P, Huerta JM, Ardanaz E, Johansson I, Harlid S, Perez-Cornago A, Mayén AL, Cordova R, Gunter MJ, Vineis P, Cross AJ, Riboli E, Jenab M

    Article  PubMed  Google Scholar 

  33. Jiao L, Weinstein SJ, Albanes D, Taylor PR, Graubard BI, Virtamo J, Stolzenberg-Solomon RZ (2011) Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-10-2573

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moy KA, Jiao L, Freedman ND, Weinstein SJ, Sinha R, Virtamo J, Albanes D, Stolzenberg-Solomon RZ (2013) Soluble receptor for advanced glycation end products and risk of liver cancer. Hepatology. https://doi.org/10.1002/hep.26264

    Article  PubMed  Google Scholar 

  35. Corsi Romanelli MM, Banfi G (2020) Longitudinal evaluation of Wnt inhibitors and comparison with others serum osteoimmunological biomarkers in osteolytic bone metastasis. J Leukoc Biol. https://doi.org/10.1002/JLB.1AB0120-212RR. de Toma DLonghi E

    Article  PubMed  Google Scholar 

  36. Nomura S, Ito T, Yoshimura H, Hotta M, Nakanishi T, Fujita S, Nakaya A, Satake A, Ishii K (2018) Evaluation of thrombosis-related biomarkers before and after therapy in patients with multiple myeloma. J Blood Med. https://doi.org/10.2147/JBM.S147743

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lai W, Li X, Kong Q, Chen H, Li Y, Xu LH, Fang J (2021) Extracellular HMGB1 interacts with RAGE and promotes chemoresistance in acute leukemia cells. Cancer Cell Int. https://doi.org/10.1186/s12935-021-02387-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ning J, Yang R, Wang H, Cui L (2021) HMGB1 enhances chemotherapy resistance in multiple myeloma cells by activating the nuclear factor-κB pathway. Exp Ther Med. https://doi.org/10.3892/etm.2021.10137

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee JJ, Park IH, Rhee WJ, Kim HS, Shin JS (2019) HMGB1 modulates the balance between senescence and apoptosis in response to genotoxic stress. FASEB J. https://doi.org/10.1096/fj.201900288R

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sorci G, Riuzzi F, Giambanco I, Donato R (2013) RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta. https://doi.org/10.1016/j.bbamcr.2012.10.021

    Article  PubMed  Google Scholar 

  41. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. https://doi.org/10.1038/nm1622

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Medical Practices: A.G, S.Ü, S.M, M.G.P, Ö.M, P.T, E.T.D, M.U.M, A.H; Concept: A.G; Design: A.G, B.Ö, B.H.E, P.T; Data Collection or Processing: A.G, B.Ö, B.H.E, M.U.M, E.T.D; Analysis or Interpretation: S.B, A.G; Literature Search: K.A, H.A, H.A.E, E.M.Y, A.H; Writing: A.G, Ö.M, P.T.

Corresponding author

Correspondence to Ayfer Geduk¹.

Ethics declarations

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Financial Disclosure

This study was supported by Kocaeli University Scientific Research Projects Coordination Unit. Project Number: 2559.

Ethics Approval

The study protocol was approved by the Kocaeli Faculty of Medicine Research Ethical Committee. (Project number: 2021/81, project approval no: GOKAEK-2021/5.12, approval date: 04/03/2021).

Consent to Participate

Written consent was obtained from all participants.

Consent for Publication

Written consent was obtained from all participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication, the article title was published incorrectly and has been corrected.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geduk¹, A., Oztas, B., Eryılmaz, B. et al. Effects of AGEs, sRAGE and HMGB1 on Clinical Outcomes in Multiple Myeloma. Indian J Hematol Blood Transfus 39, 220–227 (2023). https://doi.org/10.1007/s12288-022-01574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-022-01574-6

Keywords

Navigation