Skip to main content
Log in

Impact attenuation provided by shin guards for field hockey

  • Original Article
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

Low-energy impact testing of hockey shin guards was carried out using a drop test impact rig and a new physical setup protocol. Two brands of shin guards were impacted once (2.6 J, 3.3 J; without and with a sock), and impacted three times (3.3 J; with a sock). The peak force and impulse of a single impact increased with increasing impact energy (by approximately 30 and 7%, respectively) whilst repeated impacts increased the peak force and decreased the impulse (by approximately 70 and 3–9%, respectively, between one and three impact events). The presence of a sock attenuated impact force to a greater extent than the guards alone, at both impact energies. As a sock is usually worn over hockey shin guards, its presence contributes to enhanced protection to the lower limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parkkari J, Kujala UM, Kannus P (2001) Is it possible to prevent sports injuries? Review of controlled clinical trials and recommendations for future works. Sports Med 31(14):985–995

    Article  Google Scholar 

  2. Schiff MA, Caine DJ, O’Halloran R (2010) Injury prevention in sports. Am J Lifestyle Med 4(1):42–64

    Article  Google Scholar 

  3. Vriend I, Valkenberg H, Schoots W, Goudswaard GJ, Van der Meulen WJ, Backx FJG (2014) Shinguards effective in preventing lower leg injuries in football: population-based trend analyses over 25 years. J Sci Med Sport 18(5):518–522

    Article  Google Scholar 

  4. Velani N, Wilson O, Halkon BJ, Harland AR (2012) Measuring the risk of sustaining injury in sport a novel approach to aid the re-design of personal protective equipment. Appl Ergon 43(5):883–890

    Article  Google Scholar 

  5. Theilen T-M, Mueller-Eising W, Bettink PW, Rolle U (2016) Injury data of major international field hockey tournaments. Br Med J 50(11):657–660

    Article  Google Scholar 

  6. Backx FJG, Erich WBM, Kemper ABA, Verbeek ALM (1989) Sports injuries in school-aged children: an epidemiologic study. Am J Sports Med 17(2):234–240

    Article  Google Scholar 

  7. Murtaugh K (2001) Injury patterns among female field hockey players. Med Sci Sports Exerc 33(2):201–207

    Article  Google Scholar 

  8. Podgórski T, Pawlak M (2011) A half century of scientific research in field hockey. Hum Mov 12(2):108–123

    Google Scholar 

  9. Murphy DF, Connolly DAJ, Beynnon BD (2003) Risk factors for lower extremity injury: a review of the literature. Br J Sports Med 37(1):13–29

    Article  Google Scholar 

  10. Boden BP (1998) Leg injuries and shin guards. Clin Sports Med 17(4):769–777

    Article  MathSciNet  Google Scholar 

  11. Boden BP, Lohnes JH, Nunley JA, Garrett WE Jr (1999) Tibia and fibula fractures in soccer players. Knee Surg Sports Traumatol Arthrosc 7(4):262–266

    Article  Google Scholar 

  12. Cattermole HR, Hardy JRW, Gregg PJ (1996) The footballer’s fracture. Br J Sports Med 30(2):171–175

    Article  Google Scholar 

  13. Francisco AC, Nightingale RW, Guilak F, Glisson RR, Garrett WE (2000) Comparison of soccer shin guards in preventing tibia fracture. Am J Sports Med 28(2):227–233

    Article  Google Scholar 

  14. Nyquist GW, Cheng R, El-Bohy AAR, King AI (1985) Tibia bending: strength and response. SAE Technical Paper 851728. The Society of Automotive Engineers, New York

    Google Scholar 

  15. Templeton PA, Farrar MJ, Williams HR, Bruguera J, Smith RM (2000) Complications of tibial shaft soccer fractures. Injury 31(6):415–419

    Article  Google Scholar 

  16. Ankrah S, Mills NJ (2003) Performance of football shin guards for direct stud impacts. Sports Eng 6(4):207–219

    Article  Google Scholar 

  17. Tatar Y, Ramazanoglu N, Camliguney AF, Saygi EK, Cotuk HB (2014) The effectiveness of shin guards used by football players. J Sports Sci Med 13(1):120–127

    Google Scholar 

  18. Ankrah S, Mills NJ (2004) Analysis of ankle protection in association football. Sports Eng 7(1):41–52

    Article  Google Scholar 

  19. Naik NK, Shrirao P (2004) Composite structures under ballistic impact. Compos Struct 66(1):579–590

    Article  Google Scholar 

  20. Karagiozova D, Shu DW, Xiang X (2016) On the energy absorption of tube reinforced foam materials under quasi-static and dynamic compression. Int J Mech Sci 105:102–116

    Article  Google Scholar 

  21. Sevkat E, Liaw B, Delale F, Raju BB (2010) Effect of repeated impacts on the response of plain-woven hybrid composites. Compos B Eng 41(5):403–413

    Article  Google Scholar 

  22. De Morais WA, Monteiro SN, d’Almeida JRM (2005) Evaluation of repeated low energy impact damage in carbon–epoxy composite materials. Compos Struct 67(3):307–315

    Article  Google Scholar 

  23. Hrysomallis C (2009) Surrogate thigh model for assessing impact force attenuation of protective pads. J Sci Med Sport 12(1):35–41

    Article  Google Scholar 

  24. Zahid B, Chen X (2013) Development of a helmet test rig for continuously textile reinforced riot helmets. Int J Text Sci 2(1):12–20

    Google Scholar 

  25. Zahid B, Chen X (2014) Impact performance of single-piece continuously textile reinforced riot helmet shells. J Compos Mater 48(6):761–766

    Article  Google Scholar 

  26. Belingardi G, Cavatorta MP, Paolino DS (2008) Repeated impact response of hand lay-up and vacuum infusion thick glass reinforced laminates. Int J Impact Eng 35(7):609–619

    Article  Google Scholar 

  27. Belingardi G, Cavatorta MP, Paolino DS (2009) On the rate of growth and extent of the steady damage accumulation phase in repeated impact tests. Compos Sci Technol 69(11):1693–1698

    Article  Google Scholar 

  28. Dionne J-P, El Maach I, Shalabi A, Makris A (2003) A method for assessing the overall impact performance of riot helmets. J Appl Biomech 19(3):246–254

    Article  Google Scholar 

  29. Stretch RA (2000) The impact absorption characteristics of cricket batting helmets. J Sports Sci 18(12):959–964

    Article  Google Scholar 

  30. Gore SE, Laing RM, Wilson CA, Carr DJ, Niven BE (2006) Standardizing a pre-treatment cleaning procedure and effects of application on apparel fabrics. Text Res J 76(6):455–464

    Article  Google Scholar 

  31. International Organization for Standardization (2012) ISO 6330: 2012 Textiles - Domestic washing and drying procedures for textile testing. Int Org Stand, Geneva

    Google Scholar 

  32. International Organization for Standardization (1996) ISO 5084: 1996 (E) Textiles - Determination of thickness of textiles and textile products. Int Org Stand, Geneva

    Google Scholar 

  33. European Committee for Standardization (1997) EN 12127: 1997 Textiles - Fabrics - Determination of mass per unit area using small samples. Eur Comm Stand, Brussels

    Google Scholar 

  34. British Standards Institution (1988) BS 5441: British standard methods of test for knitted fabrics. Section 2 part 8 determination of the number of visible wales and courses per centimetre. British Standards Institution, London

    Google Scholar 

  35. International Organization for Standardization (2005) ISO 139: Textiles—standard atmospheres for conditioning and testing. Int Org Stand, Geneva

    Google Scholar 

  36. Mitrevski T, Marshall IH, Thomson R (2006) The influence of impactor shape on the damage to composite laminates. Compos Struct 76(1):116–122

    Article  Google Scholar 

  37. Mitrevski T, Marshall IH, Thomson R, Jones R, Whittingham B (2005) The effect of impactor shape on the impact response of composite laminates. Compos Struct 67(2):139–148

    Article  Google Scholar 

  38. Rai R, Bhangu GS, Mohanty SK, Goel A (2002) Kinematic and temporal evaluation of swings, stick length and their interaction in field hockey. Med Sci Sports Exerc 34(5):1–18

    Article  Google Scholar 

  39. Tobin L, Iremonger M (2006) Modern body armour and helmets: an introduction. Argos Press, Canberra

    Google Scholar 

  40. Thota N, Epaarachchi J, Lau KT (2015) Evaluation of the blunt thoracic trauma caused by solid sports ball impacts. J Biomech Sci Eng 10(2):14–00264

    Article  Google Scholar 

  41. Addison BJ, Lieberman DE (2015) Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J Biomech 48(7):1318–1324

    Article  Google Scholar 

  42. Bertrand D, Bourrier F, Olmedo I, Brun M, Berger F, Limam A (2013) Experimental and numerical dynamic analysis of a live tree stem impacted by a Charpy pendulum. Int J Solids Struct 50(10):1689–1698

    Article  Google Scholar 

  43. Pavier J, Langlet A, Eches N, Prat N, Bailly P, Jacquet J-F (2015) Experimental study of the coupling parameters influencing the terminal effects of thoracic blunt ballistic impacts. Forensic Sci Int 252:39–51

    Article  Google Scholar 

  44. Flyger N, MacRae BA (2006) Impact rig user manual, 2nd edn. University of Otago, Dunedin, New Zealand, Clothing and Textile Sciences

    Google Scholar 

  45. SPSS Inc. (2013) SPSS version 22.0.0.0 for Windows. SPSS Inc, Chicago

    Google Scholar 

  46. Harris DA, Spears IR (2010) The effect of rugby shoulder padding on peak impact force attenuation. Br J Sports Med 44(3):200–203

    Article  Google Scholar 

  47. Tyler DJ (2016) Impact protection for functional apparel. Paper presented at the The 90th Textile Institute World Conference: inseparable from the human environment, Poznan, Poland, 25-28 April 2016

  48. Aslan Z, Karakuzu R, Okutan B (2003) The response of laminated composite plates under low-velocity impact loading. Compos Struct 59(1):119–127

    Article  Google Scholar 

  49. Sankar BV (1992) Scaling of low-velocity impact for symmetric composite laminates. J Reinf Plast Compos 11(3):296–309

    Article  Google Scholar 

  50. Verdejo R, Mills NJ (2004) Simulating the effects of long distance running on shoe midsole foam. Polym Test 23(5):567–574

    Article  Google Scholar 

  51. Verdejo R, Mills NJ (2004) Heel-shoe interactions and the durability of EVA foam running-shoe midsoles. J Biomech 37(9):1379–1386

    Article  Google Scholar 

  52. Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A: Math Phy Eng Sci 382(1782):43–59

    Article  Google Scholar 

  53. Atas C, Icten BM, Küçük M (2013) Thickness effect on repeated impact response of woven fabric composite plates. Compos B Eng 49:80–85

    Article  Google Scholar 

  54. David-West OS, Nash DH, Banks WM (2008) An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact. Compos Struct 83(3):247–258

    Article  Google Scholar 

  55. De Morais WA, Monteiro SN, d’Almeida JRM (2005) Effect of the laminate thickness on the composite strength to repeated low energy impacts. Compos Struct 70(2):223–228

    Article  Google Scholar 

  56. Bir CA, Cassatta SJ, Janda DH (1995) An analysis and comparison of soccer shin guards. Clin J Sport Med 5(2):95–99

    Article  Google Scholar 

  57. Feraboli P (2006) Some recommendations for characterization of composite panels by means of drop tower impact testing. J Aircraft 43(6):1710–1718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raechel M. Laing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruznan, W.S., Laing, R.M., Lowe, B.J. et al. Impact attenuation provided by shin guards for field hockey. Sports Eng 21, 161–175 (2018). https://doi.org/10.1007/s12283-017-0260-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12283-017-0260-z

Keywords

Navigation