Skip to main content

Advertisement

Log in

Liquid biopsy using non-coding RNAs and extracellular vesicles for breast cancer management

  • Special Feature
  • Liquid biopsy
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

This article examines liquid biopsy using non-coding RNAs and extracellular vesicles in detail. Liquid biopsy is emerging as a prominent non-invasive diagnostic tool in the treatment of breast cancer. We will elucidate the roles of these molecules in early detection, monitoring treatment effectiveness, and prognostic assessment of breast cancer. Additionally, the clinical significance of these molecules will be discussed. We aim to delve into the distinct characteristics of these molecules and their possible roles in breast cancer management, with an anticipation of their contribution to future diagnostic and therapeutic advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shyamala K, Girish HC, Murgod S. Risk of tumor cell seeding through biopsy and aspiration cytology. J Int Soc Prev Community Dent. 2014;4:5–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alix-Panabières C, Pantel K. Liquid biopsy: from Discovery to clinical application. Cancer Discov. 2021;11:858–73.

    Article  PubMed  Google Scholar 

  3. Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Z, Zhang J, Diao L, Han L. Small non-coding RNAs in human cancer: function, clinical utility, and characterization. Oncogene. 2021;40:1570–7.

    Article  CAS  PubMed  Google Scholar 

  5. Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15:563–8.

    Article  CAS  PubMed  Google Scholar 

  7. miRBase. 2023.

  8. Ling L, Aldoghachi AF, Chong ZX, Ho WY, Yeap SK, Chin RJ, et al. Addressing the clinical feasibility of adopting circulating miRNA for breast cancer detection, monitoring and management with artificial intelligence and machine learning platforms. Int J Mol Sci. 2022;23:15382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li R, Qu H, Wang S, Chater JM, Wang X, Cui Y, et al. CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res. 2022;50:D1139–46.

    Article  CAS  PubMed  Google Scholar 

  10. Baldasici O, Pileczki V, Cruceriu D, Gavrilas LI, Tudoran O, Balacescu L, et al. Breast cancer-delivered exosomal miRNA as liquid biopsy biomarkers for metastasis prediction: a focus on translational research with clinical applicability. Int J Mol Sci. 2022;23:9371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cortez MA, Anfossi S, Ramapriyan R, Menon H, Atalar SC, Aliru M, et al. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer. 2019;58:244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41.

    Article  CAS  PubMed  Google Scholar 

  13. Zangouei AS, Zangoue M, Taghehchian N, Zangooie A, Rahimi HR, Saburi E, et al. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res. 2023;56:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou W, Ye XL, Xu J, Cao MG, Fang ZY, Li LY, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal. 2017;10:eaak9557.

    Article  PubMed  Google Scholar 

  15. Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol. 2019;20:835–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YL, Liu LC, Hung Y, Chen CJ, Lin YZ, Wu WR, Wang SC. Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. Breast. 2019;46:64–9.

    Article  PubMed  Google Scholar 

  18. Mitobe Y, Ikeda K, Suzuki T, Takagi K, Kawabata H, Horie-Inoue K, Inoue S. ESR1-stabilizing long noncoding RNA TMPO-AS1 promotes hormone-refractory breast cancer progression. Mol Cell Biol. 2019;39:e00261-19.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xia E, Shen Y, Bhandari A, Zhou X, Wang Y, Yang F, Wang O. Long non-coding RNA LINC00673 promotes breast cancer proliferation and metastasis through regulating B7–H6 and epithelial-mesenchymal transition. Am J Cancer Res. 2018;8:1273–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li S, Zhou J, Wang Z, Wang P, Gao X, Wang Y. Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p. Biomed Pharmacother. 2018;104:451–7.

    Article  CAS  PubMed  Google Scholar 

  21. Deng C, Zhang B, Zhang Y, Xu X, Xiong D, Chen X, Wu J. A long non-coding RNA OLBC15 promotes triple-negative breast cancer progression via enhancing ZNF326 degradation. J Clin Lab Anal. 2020;34: e23304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 2021;19:910–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Zhang Q, Zhou S, Xu H, Wang D, Feng J, et al. Circular RNA expression in exosomes derived from breast cancer cells and patients. Epigenomics. 2019;11:411–21.

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Liang H, Zhang J, Zen K, Zhang CY. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 2012;3:28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer. 2023;22:33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shefer A, Yalovaya A, Tamkovich S. Exosomes in breast cancer: involvement in tumor dissemination and prospects for liquid biopsy. Int J Mol Sci. 2022;23:8845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617–38.

    Article  CAS  PubMed  Google Scholar 

  31. Jung HH, Kim JY, Cho EY, Oh JM, Lee JE, Kim SW, et al. Elevated level of nerve growth factor (NGF) in Serum-derived exosomes predicts poor survival in patients with breast cancer undergoing neoadjuvant chemotherapy. Cancers. 2021;13:5260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan Y, Luo X, Lv W, Hu W, Zhao C, Xiong M, et al. Tumor-derived exosomal components: the multifaceted roles and mechanisms in breast cancer metastasis. Cell Death Dis. 2021;12:547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen WX, Cai YQ, Lv MM, Chen L, Zhong SL, Ma TF, et al. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol. 2014;35:9649–59.

    Article  CAS  PubMed  Google Scholar 

  34. Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, et al. Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res. 2020;391: 111983.

    Article  CAS  PubMed  Google Scholar 

  35. Chen B, Sang Y, Song X, Zhang D, Wang L, Zhao W, et al. Exosomal miR-500a-5p derived from cancer-associated fibroblasts promotes breast cancer cell proliferation and metastasis through targeting USP28. Theranostics. 2021;11:3932–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Encarnación-Medina J, Godoy L, Matta J, Ortiz-Sánchez C. Identification of exo-miRNAs: a summary of the efforts in translational studies involving triple-negative breast cancer. Cells. 2023;12:1339.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32:466–77.

    Article  CAS  PubMed  Google Scholar 

  38. Curtaz CJ, Reifschläger L, Strähle L, Feldheim J, Feldheim JJ, Schmitt C, et al. Analysis of microRNAs in exosomes of breast cancer patients in search of molecular prognostic factors in brain metastases. Int J Mol Sci. 2022;23:3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo T, Kang Y, Liu Y, Li J, Li J. Small extracellular vesicles in breast cancer brain metastasis and the prospect of clinical application. Front Bioeng Biotechnol. 2023;11:1162089.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182:1044-1061.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chanteloup G, Cordonnier M, Isambert N, Bertaut A, Hervieu A, Hennequin A, et al. Monitoring HSP70 exosomes in cancer patients’ follow up: a clinical prospective pilot study. J Extracell Vesicles. 2020;9:1766192.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, Matsuzaki J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016;107:326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18:90.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yoshikawa M, Iinuma H, Umemoto Y, Yanagisawa T, Matsumoto A, Jinno H. Exosome-encapsulated microRNA-223-3p as a minimally invasive biomarker for the early detection of invasive breast cancer. Oncol Lett. 2018;15:9584–92.

    PubMed  PubMed Central  Google Scholar 

  45. Hirschfeld M, Rucker G, Weiss D, Berner K, Ritter A, Jager M, Erbes T. Urinary Exosomal microRNAs as potential non-invasive biomarkers in breast cancer detection. Mol Diagn Ther. 2020;24:215–32.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D, et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS ONE. 2010;5: e15573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inubushi S, Kawaguchi H, Mizumoto S, Kunihisa T, Baba M, Kitayama Y, et al. Oncogenic miRNAs identified in tear exosomes from metastatic breast cancer patients. Anticancer Res. 2020;40:3091–6.

    Article  PubMed  Google Scholar 

  48. Zhong G, Wang K, Li J, Xiao S, Wei W, Liu J. Determination of serum exosomal H19 as a noninvasive biomarker for breast cancer diagnosis. Onco Targets Ther. 2020;13:2563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang K, Luo Z, Zhang Y, Zhang L, Wu L, Liu L, et al. Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. Cancer Biomark. 2016;17:187–94.

    Article  CAS  PubMed  Google Scholar 

  50. Chu M, Fang Y, Jin Y. CircRNAs as promising biomarker in diagnosis of breast cancer: an updated meta-analysis. J Clin Lab Anal. 2021;35: e23934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu Y, Zheng W, Ji C, Wang X, Chen M, Hua K, et al. Tumor-derived circRNAs as circulating biomarkers for breast cancer. Front Pharmacol. 2022;13: 811856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yin WB, Yan MG, Fang X, Guo JJ, Xiong W, Zhang RP. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 2018;487:363–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hosseinpour Z, Rezaei Tavirani M, Akbari ME. Stage analysis of breast cancer metabolomics: a system biology approach. Asian Pac J Cancer Prev. 2023;24:1571–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sueta A, Yamamoto Y, Tomiguchi M, Takeshita T, Yamamoto-Ibusuki M, Iwase H. Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 2017;8:69934–44.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Souza KCB, Evangelista AF, Leal LF, Souza CP, Vieira RA, Causin RL, et al. Identification of cell-free circulating microRNAs for the detection of early breast cancer and molecular subtyping. J Oncol. 2019;2019:8393769.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stevic I, Muller V, Weber K, Fasching PA, Karn T, Marme F, et al. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med. 2018;16:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hong F, Li N, Feng Z, Zheng Y, Zhu C, Zhang F. Exosomal microRNAs as novel diagnostic biomarkers in breast cancer: a systematic evaluation and meta-analysis. Asian J Surg. 2023;46:4727–36.

    Article  PubMed  Google Scholar 

  58. Zhang Z, Zhang L, Yu G, Sun Z, Wang T, Tian X, et al. Exosomal miR-1246 and miR-155 as predictive and prognostic biomarkers for trastuzumab-based therapy resistance in HER2-positive breast cancer. Cancer Chemother Pharmacol. 2020;86:761–72.

    Article  CAS  PubMed  Google Scholar 

  59. Long F, Ma H, Hao Y, Tian L, Li Y, Li B, et al. A novel exosome-derived prognostic signature and risk stratification for breast cancer based on multi-omics and systematic biological heterogeneity. Comput Struct Biotechnol J. 2023;21:3010–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bao S, Hu T, Liu J, Su J, Sun J, Ming Y, et al. Genomic instability-derived plasma extracellular vesicle-microRNA signature as a minimally invasive predictor of risk and unfavorable prognosis in breast cancer. J Nanobiotechnol. 2021;19:22.

    Article  CAS  Google Scholar 

  61. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. To NH, Nguyen HQ, Thiolat A, Liu B, Cohen J, Radosevic-Robin N, Belkacemi Y. Radiation therapy for triple-negative breast cancer: emerging role of microRNAs as biomarkers and radiosensitivity modifiers. A systematic review. Breast Cancer Res Treat. 2022;193:265–79.

    Article  CAS  PubMed  Google Scholar 

  63. Han X, Li M, Xu J, Fu J, Wang X, Wang J, et al. miR-1275 targets MDK/AKT signaling to inhibit breast cancer chemoresistance by lessening the properties of cancer stem cells. Int J Biol Sci. 2023;19:89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Todorova VK, Byrum SD, Gies AJ, Haynie C, Smith H, Reyna NS, Makhoul I. Circulating exosomal microRNAs as predictive biomarkers of neoadjuvant chemotherapy response in breast cancer. Curr Oncol. 2022;29:613–30.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salvador-Coloma C, Santaballa A, Sanmartin E, Calvo D, Garcia A, Hervas D, et al. Immunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Cancer. 2020;139:119–34.

    Article  CAS  PubMed  Google Scholar 

  66. Di Cosimo S, Appierto V, Pizzamiglio S, Silvestri M, Baselga J, Piccart M, et al. Early modulation of circulating microRNAs levels in HER2-positive breast cancer patients treated with trastuzumab-based neoadjuvant therapy. Int J Mol Sci. 2020;21:1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sadovska L, Zayakin P, Eglītis K, Endzeliņš E, Radoviča-Spalviņa I, Avotiņa E, et al. Comprehensive characterization of RNA cargo of extracellular vesicles in breast cancer patients undergoing neoadjuvant chemotherapy. Front Oncol. 2022;12:1005812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitobe Y, Ikeda K, Sato W, Kodama Y, Naito M, Gotoh N, et al. Proliferation-associated long noncoding RNA, TMPO-AS1, is a potential therapeutic target for triple-negative breast cancer. Cancer Sci. 2020;111:2440–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signal. 2022;20:145.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16:81.

    Article  CAS  Google Scholar 

  71. Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer. 2020;19:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ms. Masayo Kawamura for her kind assistance and administrative support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The material preparation, data collection, and analysis were performed by KH. The first draft of the manuscript was written by KH and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Akihiko Shimomura.

Ethics declarations

Conflict of interest

Dr. Shimomura reports grants from Chugai Pharmaceutical, Taiho Pharmaceutical, AstraZeneca, Mochida Pharmaceutical, Daiichi Sankyo, Eisai, and Gilead Sciences outside the submitted work, and lecture fees from Chugai Pharmaceutical, Daiichi Sankyo, Eli-Lilly, Kyowa Kirin, AstraZeneca, MSD, Gilead Sciences, Pfizer, Exact Science, and Nihon Medi-Physics outside the submitted work. The other authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, K., Ochiya, T. & Shimomura, A. Liquid biopsy using non-coding RNAs and extracellular vesicles for breast cancer management. Breast Cancer (2024). https://doi.org/10.1007/s12282-024-01562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12282-024-01562-w

Keywords

Navigation