Skip to main content

Advertisement

Log in

Neurospora crassa is a potential source of anti-cancer agents against breast cancer

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Fungi are an excellent source of pharmaceuticals including anti-tumor agents. Neurospora crassa generates metabolites with diverse structural classes, however, its potential as an anti-tumor agent source has not been explored. The purpose of this study aimed to investigate the potential of Neurospora crassa mixture against breast cancer. The in vitro T-47D and MDA-MB-231 experiments showed that N. crassa mixture at the concentrations of both 1.7 and 0.85 µg/ml significantly inhibited tumor cell proliferation, migration and invasion, and 3D spheroid formation. However, the inhibition rates of MCF-10A ranged 10–20% at concentrations of 0.85 and 1.7 µg/ml. The mixture at the concentration of 0.85 µg/ml could significantly downregulate the expressions of transcription factors of E2F1 and E2F3, cancer stem cell-related genes of LIN28, HIWI, and CD133, and onco-lncRNA HOTAIR, and increase CASP3 activity in either T-47D or MDA-MD-231 breast cancer cell lines. In vivo breast cancer C3H mouse model results showed that N. crassa mixture significantly inhibited tumor growth. These findings suggest that N. crassa contains an antitumor component(s) against breast cancer invasiveness, which may inhibit the self-renewal and differentiation of breast cancer stem cells possibly by downregulating cancer stem cell-associated and/or transcription factor genes and oncogenes, and promoting apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali S, Rasool M, Chaoudhry H, Np P, Jha P, Hafiz A, et al. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation. 2016;12:135–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ma CX, Sanchez CG, Ellis MJ. Predicting endocrine therapy responsiveness in breast cancer. Oncol (Williston Park). 2009;23:133–42.

    Google Scholar 

  3. Early Breast Cancer Trialists’ Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.

    Article  Google Scholar 

  4. Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol. 2010;28:509–18.

    Article  CAS  PubMed  Google Scholar 

  5. Rani A, Stebbing J, Giamas G, Murphy J. Endocrine resistance in hormone receptor positive breast cancer-from mechanism to therapy. Front Endocrinol (Lausanne). 2019;10:245.

    Article  Google Scholar 

  6. Piggott L, Silva A, Robinson T, Santiago-Gomez A, Simoes BM, Becker M, et al. Acquired resistance of ER-positive breast cancer to endocrine treatment confers an adaptive sensitivity to TRAIL through posttranslational downregulation of c-FLIP. Clin Cancer Res. 2018;24:2452–63.

    Article  CAS  PubMed  Google Scholar 

  7. Singh JC, Lichtman SM. Targeted agents for HER2-positive breast cancer: optimal use in older patients. Drugs Aging. 2015;32:975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cronin KA, Harlan LC, Dodd KW, Abrams JS, Ballard-Barbash R. Population-based estimate of the prevalence of HER-2 positive breast cancer tumors for early stage patients in the US. Cancer Invest. 2010;28:963–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.

    Article  CAS  PubMed  Google Scholar 

  10. Swain SM, Miles D, Kim SB, Im YH, Im SA, Semiglazov V, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21:519–30.

    Article  CAS  PubMed  Google Scholar 

  11. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  12. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34:2460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hollern DP, Honeysett J, Cardiff RD, Andrechek ER. The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast cancer. Mol Cell Biol. 2014;34:3229–43.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hollern DP, Swiatnicki MR, Rennhack JP, Misek SA, Matson BC, McAuliff A, et al. E2F1 drives breast cancer metastasis by regulating the target gene FGF13 and altering cell migration. Sci Rep. 2019;9:10718.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu LC, Wang YL, Lin PL, Zhang X, Cheng WC, Liu SH, et al. Long noncoding RNA HOTAIR promotes invasion of breast cancer cells through chondroitin sulfotransferase CHST15. Int J Cancer. 2019;145:2478–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakurai M, Miki Y, Masuda M, Hata S, Shibahara Y, Hirakawa H, et al. LIN28: a regulator of tumor-suppressing activity of let-7 microRNA in human breast cancer. J Steroid Biochem Mol Biol. 2012;131:101–6.

    Article  CAS  PubMed  Google Scholar 

  17. Feng C, Neumeister V, Ma W, Xu J, Lu L, Bordeaux J, et al. Lin28 regulates HER2 and promotes malignancy through multiple mechanisms. Cell Cycle. 2012;11:2486–94.

    Article  CAS  PubMed  Google Scholar 

  18. Dong P, Xiong Y, Konno Y, Ihira K, Xu D, Kobayashi N, et al. Critical roles of PIWIL1 in human tumors: expression, functions, mechanisms, and potential clinical implications. Front Cell Dev Biol. 2021;9: 656993.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem. 2015;84:519–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Cao X, An Q, Zhang Y, Li K, Yao W, et al. Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun. 2018;9:1406.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer. 2001;1:181–93.

    Article  CAS  PubMed  Google Scholar 

  22. Zanardi S, Serrano D, Argusti A, Barile M, Puntoni M, Decensi A. Clinical trials with retinoids for breast cancer chemoprevention. Endocr Relat Cancer. 2006;13:51–68.

    Article  CAS  PubMed  Google Scholar 

  23. de Vogel S, Dindore V, van Engeland M, Goldbohm RA, van den Brandt PA, Weijenberg MP. Dietary folate, methionine, riboflavin, and vitamin B-6 and risk of sporadic colorectal cancer. J Nutr. 2008;138:2372–8.

    Article  PubMed  Google Scholar 

  24. Li J, Kristiansen KA, Hansen BG, Halkier BA. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis. J Exp Bot. 2011;62:1337–46.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell. 2009;138:660–72.

    Article  CAS  PubMed  Google Scholar 

  26. Lu L, Zhu G, Zhang C, Deng Q, Katsaros D, Mayne ST, et al. Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res Treat. 2012;136:875–83.

    Article  CAS  PubMed  Google Scholar 

  27. Lu L, Katsaros D, Shaverdashvili K, Qian B, Wu Y, de la Longrais IA, et al. Pluripotent factor lin-28 and its homologue lin-28b in epithelial ovarian cancer and their associations with disease outcomes and expression of let-7a and IGF-II. Eur J Cancer. 2009;45:2212–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lan X, Wu YZ, Wang Y, Wu FR, Zang CB, Tang C, et al. CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. Int J Mol Med. 2013;31:315–24.

    Article  CAS  PubMed  Google Scholar 

  29. Han R, Chen X, Li Y, Zhang S, Li R, Lu L. MicroRNA-34a suppresses aggressiveness of hepatocellular carcinoma by modulating E2F1, E2F3, and Caspase-3. Cancer Manag Res. 2019;11:2963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu L, Katsaros D, Risch HA, Canuto EM, Biglia N, Yu H. MicroRNA let-7a modifies the effect of self-renewal gene HIWI on patient survival of epithelial ovarian cancer. Mol Carcinog. 2016;55:357–65.

    Article  CAS  PubMed  Google Scholar 

  31. Han R, Zhao J, Lu L. MicroRNA34a expression affects breast cancer invasion in vitro and patient survival via downregulation of E2F1 and E2F3 expression. Oncol Rep. 2020;43:2062–72.

    CAS  PubMed  Google Scholar 

  32. Han R, Nusbaum O, Chen X, Zhu Y. Valeric acid suppresses liver cancer development by acting as a novel HDAC inhibitor. Mol Ther Oncolytics. 2020;19:8–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu ZL, Bi XW, Liu PP, Lei DX, Wang Y, Li ZM, et al. Expressions and prognostic values of the E2F transcription factors in human breast carcinoma. Cancer Manag Res. 2018;10:3521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lv K, Liu L, Wang L, Yu J, Liu X, Cheng Y, et al. Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS ONE. 2012;7: e40008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng F, Li TT, Wang KL, Xiao GQ, Wang JH, Zhao HD, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis. 2017;8: e2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Jiang Y, Bian C, Dong Y, Ma C, Hu X, et al. Overexpression of Hiwi inhibits the cell growth of chronic myeloid leukemia K562 cells and enhances their chemosensitivity to daunomycin. Cell Biochem Biophys. 2015;73:129–35.

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Tong X, Gao H, Yan X, Xu X, Sun S, et al. Silencing HIWI suppresses the growth, invasion and migration of glioma cells. Int J Oncol. 2014;45:2385–92.

    Article  CAS  PubMed  Google Scholar 

  38. Ozes AR, Miller DF, Ozes ON, Fang F, Liu Y, Matei D, et al. NF-kappaB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene. 2016;35:5350–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu Y, Lv F, Liang D, Yang Q, Zhang B, Lin H, et al. HOTAIR may regulate proliferation, apoptosis, migration and invasion of MCF-7 cells through regulating the P53/Akt/JNK signaling pathway. Biomed Pharmacother. 2017;90:555–61.

    Article  CAS  PubMed  Google Scholar 

  40. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32:1616–25.

    Article  CAS  PubMed  Google Scholar 

  41. Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, et al. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002;21:8843–51.

    Article  CAS  PubMed  Google Scholar 

  42. Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, et al. Toward a cancer drug of fungal origin. Med Res Rev. 2015;35:937–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422:859–68.

    Article  CAS  PubMed  Google Scholar 

  44. Rodriguez S, Ward A, Reckard AT, Shtanko Y, Hull-Crew C, Klocko AD. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology. G3 (Bethesda). 2022; 12.

Download references

Funding

This research was partly supported by “Basic and Applied Basic Research Projects (202102021125)” project (to Rui Han).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RH, LL; Investigation: RH, HY, Methodology: RH, HY, LL; Visualization and Validation: RH, HY, LL; Writing and editing: RH, HY, CL, LL.

Corresponding author

Correspondence to Lingeng Lu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Yang, H., Ling, C. et al. Neurospora crassa is a potential source of anti-cancer agents against breast cancer. Breast Cancer 29, 1032–1041 (2022). https://doi.org/10.1007/s12282-022-01383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-022-01383-9

Keywords

Navigation