Does breast cancer growth rate really depend on tumor subtype? Measurement of tumor doubling time using serial ultrasonography between diagnosis and surgery

Abstract

Background

Breast cancer growth is generally expected to differ between tumor subtypes. We aimed to evaluate tumor doubling time (DT) using ultrasonography and verify whether each tumor subtype has a unique DT.

Methods

This retrospective study included 265 patients with invasive breast cancer who received serial ultrasonography between diagnosis and surgery. Tumor diameters were measured in three directions and DTs were calculated according to an exponential growth model using the volume change during serial ultrasonography. We investigated the relationships between DT, tumor subtype, and histopathological factors.

Results

Volumes did not change in 95 (36%) of 265 tumors and increased in 170 (64%) tumors during serial ultrasonography (mean interval, 56.9 days). The mean volume increases of all tumors and volume-increased tumors were 22.1% and 34.5%, respectively. Triple-negative tumors had greater volume increases (40% vs. 20%, p = 0.001) and shorter DT (124 vs. 185 days, p = 0.027) than estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)– tumors. Volume-increased tumors had higher Ki-67 indices than those of volume-stable tumors in ER+/HER2− (p = 0.002) and ER+/HER2+ tumors (p = 0.011) and higher histological grades in all tumors except triple-negative tumors (p < 0.001). Triple-negative tumors with DTs < 90 days (short-DT) showed higher Ki-67 indices than those with DTs > 90 days (long-DT) (p = 0.008). In ER+/HER2− tumors, histological grades were higher for short-DT than for long-DT tumors (p = 0.022).

Conclusion

Differences in tumor DT depending on breast cancer subtype, Ki-67 index, and histological grade were confirmed using serial ultrasonography even during preoperative short interval.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Richardson LC, Royalty J, Howe W, Helsel W, Kammerer W, Benard VB. Timeliness of breast cancer diagnosis and initiation of treatment in the National Breast and Cervical Cancer Early Detection Program, 1996–2005. Am J Public Health. 2010;100:1769–76.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Bleicher RJ, Ruth K, Sigurdson ER, Beck JR, Ross E, Wong YN, et al. Time to Surgery and Breast Cancer Survival in the United States. JAMA Oncol. 2016;2:330–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Neal RD, Tharmanathan P, France B, Din NU, Cotton S, Fallon-Ferguson J, et al. Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. Br J Cancer. 2015;112(Suppl 1):92–107.

    Article  Google Scholar 

  4. 4.

    Friberg S, Mattson S. On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol. 1997;65:284–97.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Hart D, Shochat E, Agur Z. The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer. 1998;78:382–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Kusama S, Spratt JS Jr, Donegan WL, Watson FR, Cunningham C. The gross rates of growth of human mammary carcinoma. Cancer. 1972;30:594–9.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Spratt JS, Greenberg RA, Heuser LS. Geometry, growth rates, and duration of cancer and carcinoma in situ of the breast before detection by screening. Cancer Res. 1986;46:970–4.

    PubMed  CAS  Google Scholar 

  8. 8.

    Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S. Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 2008;10:R41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ho JM, Jafferjee N, Covarrubias GM, Ghesani M, Handler B. Dense breasts: a review of reporting legislation and available supplemental screening options. AJR Am J Roentgenol. 2014;203:449–56.

    Article  PubMed  Google Scholar 

  10. 10.

    Bosch AM, Kessels AG, Beets GL, Rupa JD, Koster D, van Engelshoven JM, et al. Preoperative estimation of the pathological breast tumour size by physical examination, mammography and ultrasound: a prospective study on 105 invasive tumours. Eur J Radiol. 2003;48:285–92.

    Article  PubMed  Google Scholar 

  11. 11.

    Fasching PA, Heusinger K, Loehberg CR, Wenkel E, Lux MP, Schrauder M, et al. Influence of mammographic density on the diagnostic accuracy of tumor size assessment and association with breast cancer tumor characteristics. Eur J Radiol. 2006;60:398–404.

    Article  PubMed  Google Scholar 

  12. 12.

    Yoo TK, Min JW, Kim MK, Lee E, Kim J, Lee HB, et al. In vivo tumor growth rate measured by US in preoperative period and long term disease outcome in breast cancer patients. PLoS One. 2015;10:e0144144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Lee SH, Kim YS, Han W, Ryu HS, Chang JM, Cho N, et al. Tumor growth rate of invasive breast cancers during wait times for surgery assessed by ultrasonography. Medicine (Baltimore). 2016;95:e4874.

    Article  Google Scholar 

  14. 14.

    Collins VP, Loeffler RK, Tivey H. Observations on growth rates of human tumors. Am J Roentgenol Radium Ther Nucl Med. 1956;76:988–1000.

    PubMed  CAS  Google Scholar 

  15. 15.

    Ryu EB, Chang JM, Seo M, Kim SA, Lim JH, Moon WK. Tumour volume doubling time of molecular breast cancer subtypes assessed by serial breast ultrasound. Eur Radiol. 2014;24:2227–35.

    Article  PubMed  Google Scholar 

  16. 16.

    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988;48:7067–71.

    PubMed  CAS  Google Scholar 

  18. 18.

    Mehrara E, Forssell-Aronsson E, Ahlman H, Bernhardt P. Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. Cancer Res. 2007;67:3970–5.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    von Fournier D, Weber E, Hoeffken W, Bauer M, Kubli F, Barth V. Growth rate of 147 mammary carcinomas. Cancer. 1980;45:2198–207.

    Article  Google Scholar 

  20. 20.

    Peer PG, van Dijck JA, Hendriks JH, Holland R, Verbeek AL. Age-dependent growth rate of primary breast cancer. Cancer. 1993;71:3547–51.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Heuser L, Spratt JS, Polk HC. Jr. Growth rates of primary breast cancers. Cancer. 1979;43:1888–94.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Dussan C, Zubor P, Fernandez M, Yabar A, Szunyogh N, Visnovsky J. Spontaneous regression of a breast carcinoma: a case report. Gynecol Obstet Invest. 2008;65:206–11.

    Article  PubMed  Google Scholar 

  23. 23.

    Tokunaga E, Okano S, Nakashima Y, Yamashita N, Tanaka K, Akiyoshi S, et al. Spontaneous regression of breast cancer with axillary lymph node metastasis: a case report and review of literature. Int J Clin Exp Pathol. 2014;7:4371–80.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kuroishi T, Tominaga S, Morimoto T, Tashiro H, Itoh S, Watanabe H, et al. Tumor growth rate and prognosis of breast cancer mainly detected by mass screening. Jpn J Cancer Res. 1990;81:454–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Tabbane F, Bahi J, Rahal K, el May A, Riahi M, Cammoun M, et al. Inflammatory symptoms in breast cancer. Correlations with growth rate, clinicopathologic variables, and evolution. Cancer. 1989;64:2081–9.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS One. 2016;11:e0157368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Pareja F, Geyer FC, Marchio C, Burke KA, Weigelt B, Reis-Filho JS. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2016;2:16036.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ono M, Tsuda H, Yunokawa M, Yonemori K, Shimizu C, Tamura K, et al. Prognostic impact of Ki-67 labeling indices with 3 different cutoff values, histological grade, and nuclear grade in hormone-receptor-positive, HER2-negative, node-negative invasive breast cancers. Breast Cancer. 2015;22:141–52.

    Article  PubMed  Google Scholar 

  31. 31.

    Galante E, Gallus G, Guzzon A, Bono A, Bandieramonte G, Di Pietro S. Growth rate of primary breast cancer and prognosis: observations on a 3- to 7-year follow-up in 180 breast cancers. Br J Cancer. 1986;54:833–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Heuser LS, Spratt JS, Kuhns JG, Chang AF, Polk HC Jr, Buchanan JB. The association of pathologic and mammographic characteristics of primary human breast cancers with “slow” and “fast” growth rates and with axillary lymph node metastases. Cancer. 1984;53:96–8.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Zhang S, Ding Y, Zhou Q, Wang C, Wu P, Dong J. Correlation Factors Analysis of Breast Cancer Tumor Volume Doubling Time Measured by 3D-Ultrasound. Med Sci Monit. 2017;23:3147–53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Girometti R, Zanotel M, Londero V, Linda A, Lorenzon M, Zuiani C. Automated breast volume scanner (ABVS) in assessing breast cancer size: A comparison with conventional ultrasound and magnetic resonance imaging. Eur Radiol. 2017.

Download references

Acknowledgements

We thank Enago (http://www.enago.jp) for the English language review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Nakashima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakashima, K., Uematsu, T., Takahashi, K. et al. Does breast cancer growth rate really depend on tumor subtype? Measurement of tumor doubling time using serial ultrasonography between diagnosis and surgery. Breast Cancer 26, 206–214 (2019). https://doi.org/10.1007/s12282-018-0914-0

Download citation

Keywords

  • Breast cancer
  • Ultrasonography
  • Molecular subtype
  • Tumor growth rate
  • Doubling time