Skip to main content

Advertisement

Log in

C4.4A highly expressed in HER2-positive human breast cancers may indicate a good prognosis

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

The aim of our study was to investigate the association of C4.4A expression in breast tumors with both patients’ clinicopathological characteristics and outcomes in order to clarify the significance of C4.4A in breast cancer.

Methods

Primary breast cancer patients (n = 125, stage I–III) who had undergone breast mastectomy or breast-conserving surgery at our hospital between 2005 and 2011 were recruited for this study. Tumor samples were obtained from surgical specimens and expression status of C4.4A, estrogen receptors, progesterone receptors, human epidermal growth factor receptor 2 (HER2) and Ki67 was analyzed immunohistochemically, while HER2 amplification was examined using fluorescence in situ hybridization.

Results

Multivariate analysis showed that HER2 positivity was the only independent predictive factor for C4.4A expression (odds ratio 5.31, 95 % confidence interval 2.04–15.72; P < 0.001). Univariate prognostic analysis of the relationship between C4.4A and disease-free survival showed that survival of patients with C4.4A-positive tumors was longer than that of patients with C4.4A-negative tumors in the HER2-positive subset (P = 0.004) while there was no significant difference in patient outcome according to C4.4A status for total patients (median observation period 37 months, range 1–92 months; P = 0.223).

Conclusions

We established a positive relationship between C4.4A and HER2 status, suggesting that C4.4A expression may be a prognostic factor for HER2-positive breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22:1736–47.

    Google Scholar 

  2. Albain KS, Paik S, van’t Veer L. Prediction of adjuvant chemotherapy benefit in endocrine responsive, early breast cancer using multigene assays. Breast. 2009;18(Suppl 3):S141–5.

    Article  PubMed  Google Scholar 

  3. Naoi Y, Kishi K, Tanei T, Tsunashima R, Tominaga N, Baba Y, et al. Development of 95-gene classifier as a powerful predictor of recurrences in node-negative and ER-positive breast cancer patients. Breast Cancer Res Treat. 2011;128:633–41.

    Article  PubMed  Google Scholar 

  4. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213:374–83.

    Article  CAS  PubMed  Google Scholar 

  5. Liu T, Zhang X, Shang M, Zhang Y, Xia B, Niu M, et al. Dysregulated expression of Slug, vimentin, and E-cadherin correlates with poor clinical outcome in patients with basal-like breast cancer. J Surg Oncol. 2012;. doi:10.1002/jso.23240.

    PubMed Central  Google Scholar 

  6. Rosel M, Claas C, Seiter S, Herlevsen M, Zoller M. Cloning and functional characterization of a new phosphatidyl-inositol anchored molecule of a metastasizing rat pancreatic tumor. Oncogene. 1998;17:1989–2002.

    Article  CAS  PubMed  Google Scholar 

  7. Jo M, Lester RD, Montel V, Eastman B, Takimoto S, Gonias SL. Reversibility of epithelial–mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. J Biol Chem. 2009;284:22825–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wurfel J, Seiter S, Stassar M, Claas A, Klas R, Rosel M, et al. Cloning of the human homologue of the metastasis-associated rat C4.4A. Gene. 2001;262:35–41.

    Article  CAS  PubMed  Google Scholar 

  9. Seiter S, Stassar M, Rappl G, Reinhold U, Tilgen W, Zoller M. Upregulation of C4.4A expression during progression of melanoma. J Investig Dermatol. 2001;116:344–7.

    Article  CAS  PubMed  Google Scholar 

  10. Smith BA, Kennedy WJ, Harnden P, Selby PJ, Trejdosiewicz LK, Southgate J. Identification of genes involved in human urothelial cell–matrix interactions: implications for the progression pathways of malignant urothelium. Cancer Res. 2001;61:1678–85.

    CAS  PubMed  Google Scholar 

  11. Hansen LV, Skov BG, Ploug M, Pappot H. Tumour cell expression of C4.4A, a structural homologue of the urokinase receptor, correlates with poor prognosis in non-small cell lung cancer. Lung Cancer. 2007;58:260–6.

    Article  PubMed  Google Scholar 

  12. Fletcher GC, Patel S, Tyson K, Adam PJ, Schenker M, Loader JA, et al. hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan. Br J Cancer. 2003;88:579–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hansen LV, Laerum OD, Illemann M, Nielsen BS, Ploug M. Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma. Int J Cancer. 2008;122:734–41.

    Google Scholar 

  14. Konishi K, Yamamoto H, Mimori K, Takemasa I, Mizushima T, Ikeda M, et al. Expression of C4.4A at the invasive front is a novel prognostic marker for disease recurrence of colorectal cancer. Cancer Sci. 2010;101:2269–77.

    Article  CAS  PubMed  Google Scholar 

  15. Oshiro R, Yamamoto H, Takahashi H, Ohtsuka M, Wu X, Nishimura J, et al. C4.4A is associated with tumor budding and epithelial–mesenchymal transition of colorectal cancer. Cancer Sci. 2012;103:1155–64.

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsuka M, Yamamoto H, Masuzawa T, Takahashi H, Uemura M, Haraguchi N, et al. C4.4A expression is associated with a poor prognosis of esophageal squamous cell carcinoma. Ann Surg Oncol. 2013;. doi:10.1245/s10434-013-2900-2.

    Google Scholar 

  17. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol. 2005;16:1569–83.

    Article  CAS  PubMed  Google Scholar 

  18. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol. 2007;18:1133–44.

    Article  CAS  PubMed  Google Scholar 

  19. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol. 2009;20:1319–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, et al. The EnVision ++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol. 1998;51:506–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Murase K, Yanai A, Saito M, Imamura M, Miyagawa Y, Takatsuka Y, et al. Biological characteristics of luminal subtypes in pre- and postmenopausal estrogen receptor-positive and HER2-negative breast cancers. Breast Cancer. 2012;. doi:10.1007/s12282-012-0348-z.

    PubMed  Google Scholar 

  22. Jeong H, Ryu YJ, An J, Lee Y, Kim A. Epithelial–mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology. 2012;60:E87–95.

    Article  PubMed  Google Scholar 

  23. Guarino M, Rubino B, Ballabio G. The role of epithelial–mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.

    Article  CAS  PubMed  Google Scholar 

  24. Drasin DJ, Robin TP, Ford HL. Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res. 2011;13:226.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Criscitiello C, Azim HA Jr, Schouten PC, Linn SC, Sotiriou C. Understanding the biology of triple-negative breast cancer. Ann Oncol. 2012;23 Suppl 6:vi13–8.

    Google Scholar 

  26. Berg D, Wolff C, Malinowsky K, Tran K, Walch A, Bronger H, et al. Profiling signalling pathways in formalin-fixed and paraffin-embedded breast cancer tissues reveals cross-talk between EGFR, HER2, HER3 and uPAR. J Cell Physiol. 2012;227:204–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Y.M. received honoraria from Sanofi, Astra Zeneka K.K. and GlaxoSmithKline K.K.; the other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Miyoshi.

About this article

Cite this article

Miyake, T., Ito, T., Yanai, A. et al. C4.4A highly expressed in HER2-positive human breast cancers may indicate a good prognosis. Breast Cancer 22, 366–373 (2015). https://doi.org/10.1007/s12282-013-0487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-013-0487-x

Keywords

Navigation