Skip to main content

Advertisement

Log in

Pharmacological and Host Considerations in the Selection of Dose and Duration of Azole Therapy for Adult Patients

  • Pharmacology and Pharmacodynamics of Antifungal Agents (ME Klepser, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Azole antifungals are used to treat a myriad of fungal infections in diverse patient populations. As a result, it becomes clear that use of one size fits all azole dosing regimens is illogical. Three general variable categories are essential to consider when developing an approach the management of fungal infections with the azoles. These categories are the pharmacological, microbiological, and host. In the clinical setting information regarding microbiological variables if often lacking; however, host and pharmacological data are abundant. Unfortunately, these available data are not always used to construct individualized dosing strategies. In this review, host and pharmacological factors that can influence azole activity will be presented. Additionally, recommendations will be provided to help the clinician optimize azole dosing regimens based on these variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pfizer. Voriconazole Package insert. In; 2011.

  2. Pfizer. Fluconazole Package Insert. In; 2011.

  3. Sansone-Parsons A, Krishna G, Simon J, et al. Effects of age, gender, and race/ethnicity on the pharmacokinetics of posaconazole in healthy volunteers. Antimicrob Agents Chemother. 2007;51:495–502.

    Article  PubMed  CAS  Google Scholar 

  4. Courtney R, Pai S, Laughlin M, Lim J, Batra V. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother. 2003;47:2788–95.

    Article  PubMed  CAS  Google Scholar 

  5. Ullmann AJ, Cornely OA, Burchardt A, et al. Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob Agents Chemother. 2006;50:658–66.

    Article  PubMed  CAS  Google Scholar 

  6. Purkins L, Wood N, Kleinermans D, Greenhalgh K, Nichols D. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole. Br J Clin Pharmacol. 2003;56 Suppl 1:17–23.

    Article  PubMed  CAS  Google Scholar 

  7. Krishna G, Moton A, Ma L, Medlock MM, McLeod J. Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob Agents Chemother. 2009;53:958–66.

    Article  PubMed  CAS  Google Scholar 

  8. •• Kohl V, Muller C, Cornely OA, et al. Factors influencing pharmacokinetics of prophylactic posaconazole in patients undergoing allogeneic stem cell transplantation. Antimicrob Agents Chemother. 2010;54:207–12. This article describes various patient factors that influence the pharmacokinetics of posaconazole undergoing allogenic stem cell trasplantation. Among the factors studies, patient age significantly decreased the volume of distribution and presence of diarrhea decreased bioavailability by 59%. The importance of patient variables on the pharmacokinetics of posaconazole add evidence supporting therapeutic drug monitoring for posaconazole.

    Article  PubMed  CAS  Google Scholar 

  9. Gubbins PO, Krishna G, Sansone-Parsons A, et al. Pharmacokinetics and safety of oral posaconazole in neutropenic stem cell transplant recipients. Antimicrob Agents Chemother. 2006;50:1993–9.

    Article  PubMed  CAS  Google Scholar 

  10. Ripa S, Ferrante L, Prenna M. Pharmacokinetics of fluconazole in normal volunteers. Chemotherapy. 1993;39:6–12.

    Article  PubMed  CAS  Google Scholar 

  11. Schering-Plough. Posaconazole Package Insert. In; 2008.

  12. Weiler S, Fiegl D, MacFarland R, et al. Human tissue distribution of voriconazole. Antimicrob Agents Chemother. 2011;55:925–8.

    Article  PubMed  CAS  Google Scholar 

  13. Capitano B, Potoski BA, Husain S, et al. Intrapulmonary penetration of voriconazole in patients receiving an oral prophylactic regimen. Antimicrob Agents Chemother. 2006;50:1878–80.

    Article  PubMed  CAS  Google Scholar 

  14. Hariprasad SM, Mieler WF, Holz ER, et al. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans. Arch Ophthalmol. 2004;122:42–7.

    Article  PubMed  CAS  Google Scholar 

  15. Calcagno A, Baietto L, De Rosa FG, et al. Posaconazole cerebrospinal concentrations in an HIV-infected patient with brain mucormycosis. J Antimicrob Chemother. 2011;66:224–5.

    Article  PubMed  CAS  Google Scholar 

  16. • Conte Jr JE, Golden JA, Krishna G, McIver M, Little E, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of posaconazole at steady state in healthy subjects. Antimicrob Agents Chemother. 2009;53:703–7. This article highlights posaconazole accumulation differences among plasma, epithelial lining fluid, and alveolar cells. These data demonstrate high degree of accumulation in alveolar cells.

    Article  PubMed  CAS  Google Scholar 

  17. • Farowski F, Cornely OA, Vehreschild JJ, et al. Intracellular concentrations of posaconazole in different compartments of peripheral blood. Antimicrob Agents Chemother. 2010;54:2928–31. This article highlights the ablility of posaconazole to accumulate in various components of peripheral blood. Posaconazole achieves higher concentrations in peripherial blood mononuclear cells, polymorphonuclear leukocytes and to a lesser extent red blood cells compared to plasma concentrations.

    Article  PubMed  CAS  Google Scholar 

  18. Krieter P, Flannery B, Musick T, Gohdes M, Martinho M, Courtney R. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother. 2004;48:3543–51.

    Article  PubMed  CAS  Google Scholar 

  19. Klepser ME, Malone D, Lewis RE, Ernst EJ, Pfaller MA. Evaluation of voriconazole pharmacodynamics using time-kill methodology. Antimicrob Agents Chemother. 2000;44:1917–20.

    Article  PubMed  CAS  Google Scholar 

  20. Klepser ME, Wolfe EJ, Jones RN, Nightingale CH, Pfaller MA. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother. 1997;41:1392–5.

    PubMed  CAS  Google Scholar 

  21. Klepser ME, Wolfe EJ, Pfaller MA. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B against Cryptococcus neoformans. J Antimicrob Chemother. 1998;41:397–401.

    Article  PubMed  CAS  Google Scholar 

  22. Andes D, Marchillo K, Conklin R, et al. Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother. 2004;48:137–42.

    Article  PubMed  CAS  Google Scholar 

  23. Andes D, Marchillo K, Stamstad T, Conklin R. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:3165–9.

    Article  PubMed  CAS  Google Scholar 

  24. Andes D, van Ogtrop M. Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother. 1999;43:2116–20.

    PubMed  CAS  Google Scholar 

  25. Pai MP, Turpin RS, Garey KW. Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia. Antimicrob Agents Chemother. 2007;51:35–9.

    Article  PubMed  CAS  Google Scholar 

  26. Clancy CJ, Yu VL, Morris AJ, Snydman DR, Nguyen MH. Fluconazole MIC and the fluconazole dose/MIC ratio correlate with therapeutic response among patients with candidemia. Antimicrob Agents Chemother. 2005;49:3171–7.

    Article  PubMed  CAS  Google Scholar 

  27. Perfect JR. The impact of the host on fungal infections. Am J Med. 2012;125:S39–51.

    Article  PubMed  CAS  Google Scholar 

  28. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin Infect Dis. 2007;44:531–40.

    Article  Google Scholar 

  29. Rex JH, Pfaller MA, Galgiani JN, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis. 1997;24:235–47.

    CAS  Google Scholar 

  30. Fukuda T, Boeckh M, Carter RA, et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood. 2003;102:827–33.

    Article  PubMed  CAS  Google Scholar 

  31. Casadevall A, Pirofski L. Host-pathogen interactions: the attributes of virulence. J Infect Dis. 2001;184:337–44.

    Article  PubMed  CAS  Google Scholar 

  32. Martino R, Parody R, Fukuda T, et al. Impact of the intensity of the pretransplantation conditioning regimen in patients with prior invasive aspergillosis undergoing allogeneic hematopoietic stem cell transplantation: A retrospective survey of the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2006;108:2928–36.

    Article  PubMed  CAS  Google Scholar 

  33. Himmelmann B, Himmelmann A, Furrer K, Halter J, Schanz U. Late G-CSF after allogeneic bone marrow or peripheral blood stem cell transplantation: a prospective controlled trial. Bone Marrow Transplant. 2002;30:491–6.

    Article  PubMed  CAS  Google Scholar 

  34. Casadevall A, Pirofski LA. Adjunctive immune therapy for fungal infections. Clin Infect Dis. 2001;33:1048–56.

    Article  CAS  Google Scholar 

  35. Singh N, Perfect JR. Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect Dis. 2007;7:395–401.

    Article  PubMed  Google Scholar 

  36. Legrand F, Lecuit M, Dupont B, et al. Adjuvant corticosteroid therapy for chronic disseminated candidiasis. Clin Infect Dis. 2008;46:696–702.

    Article  CAS  Google Scholar 

  37. •• Scholz I, Oberwittler H, Riedel KD, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68:906–15. This article describes the impact of CYP2C19 geneotype on the pharmacokinetics of voriconazole. Genotype status significantly impacts drug bioavailability and overall drug exposure.

    Article  PubMed  CAS  Google Scholar 

  38. Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin Jr DK, Thakker DR. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug metabolism and disposition: the biological fate of chemicals. 2010;38:25–31.

    Article  CAS  Google Scholar 

  39. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug metabolism and disposition: the biological fate of chemicals. 2003;31:540–7.

    Article  CAS  Google Scholar 

  40. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23.

    PubMed  CAS  Google Scholar 

  41. Wang G, Lei HP, Li Z, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65:281–5.

    Article  PubMed  CAS  Google Scholar 

  42. Abel S, Allan R, Gandelman K, Tomaszewski K, Webb DJ, Wood ND. Pharmacokinetics, safety and tolerance of voriconazole in renally impaired subjects: two prospective, multicentre, open-label, parallel-group volunteer studies. Clin Drug Investig. 2008;28:409–20.

    Article  PubMed  CAS  Google Scholar 

  43. Sobue S, Tan K, Haug-Pihale G. The effects of hepatic impairment on the pharmacokinetics of fosfluconazole and fluconazole following a single intravenous bolus injection of fosfluconazole. Br J Clin Pharmacol. 2005;59:160–6.

    Article  PubMed  CAS  Google Scholar 

  44. Moton A, Krishna G, Ma L, et al. Pharmacokinetics of a single dose of the antifungal posaconazole as oral suspension in subjects with hepatic impairment. Curr Med Res Opin. 2010;26:1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Klepser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klepser, M.E. Pharmacological and Host Considerations in the Selection of Dose and Duration of Azole Therapy for Adult Patients. Curr Fungal Infect Rep 6, 127–132 (2012). https://doi.org/10.1007/s12281-012-0089-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-012-0089-7

Keywords

Navigation