Skip to main content

Advertisement

Log in

Pharmacogenomics of systemic antifungal agents

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The genomic era offers a multitude of new technologies that may make the promise of personalized medicine a reality for patients in this century. Numerous new antifungal agents have been developed over the past two decades, but use of these agents requires optimization of pharmacokinetics and dosing to achieve efficacy and minimize toxicity. This article reviews the potential application of pharmacogenomics to the use of antifungal agents, highlighting genetic variation that may affect absorption, distribution, metabolism, and elimination of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Huang SM, Goodsaid F, Rahman A, et al.: Application of pharmacogenomics in clinical pharmacology. Toxicol Mech Method 2006, 16:89–99.

    Article  CAS  Google Scholar 

  2. US Food and Drug Administration: Genomics at FDA. Available at http://www.fda.gov/cder/genomics/default.htm. Accessed April 5, 2009.

  3. Meletiadis J, Chanock S, Walsh TJ: Human pharmacogenomic variations and their implications for antifungal efficacy. Clin Microbiol Rev 2006, 19:763–787.

    Article  PubMed  CAS  Google Scholar 

  4. Meletiadis J, Chanock S, Walsh TJ: Defining targets for investigating the pharmacogenomics of adverse drug reactions to antifungal agents. Pharmacogenomics 2008, 9:561–584.

    Article  PubMed  CAS  Google Scholar 

  5. Dodds Ashley ES, Lewis R, Lewis JS, et al.: Pharmacology of systemic antifungal agents. Clin Infect Dis 2006, 43:S28–S39.

    Article  CAS  Google Scholar 

  6. Krishna G, Moton A, Ma L, et al.: Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob Agents Chemother 2009, 53:958–966.

    Article  PubMed  CAS  Google Scholar 

  7. Blum RA, D’Andrea DT, Florentino BM, et al.: Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann Intern Med 1991, 114:755–757.

    PubMed  CAS  Google Scholar 

  8. Courtney R, Radwanski E, Lim J, Laughlin M: Pharmacokinetics of posaconazole coadministered with antacid in fasting or nonfasting healthy men. Antimicrob Agents Chemother 2004, 48:804–808.

    Article  PubMed  CAS  Google Scholar 

  9. Carlson JA, Mann HJ, Canafax DM: Effect of pH on disintegration and dissolution of ketoconazole tablets. Am J Hosp Pharm 1983, 40:1334–1336.

    PubMed  CAS  Google Scholar 

  10. Van Der Meer JW, Keuning JJ, Scheijgrond HW, et al.: The influence of gastric acidity on the bio-availability of ketoconazole. J Antimicrob Chemother 1980, 6:552–554.

    Article  Google Scholar 

  11. Drew RH, Perfect JR, Gallis HA: Use of fluconazole in a patient with documented malabsorption of ketoconazole. Clin Pharm 1988, 7:622–623.

    PubMed  CAS  Google Scholar 

  12. Courtney R, Wexler D, Radwanski E, et al.: Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol 2004, 57:218–222.

    Article  PubMed  Google Scholar 

  13. Williams MP, Blanshard C, Millson C, et al.: A placebocontrolled study to assess the effects of 7-day dosing with 10, 20 and 40 mg rabeprazole on 24-h intragastric acidity and plasma gastrin in healthy male subjects. Aliment Pharmacol Ther 2000, 14:691–699.

    Article  PubMed  CAS  Google Scholar 

  14. Welage LS, Carver PL, Revankar S, et al.: Alterations in gastric acidity in patients infected with human immunodeficiency virus. Clin Infect Dis 1995, 21:1431–1438.

    PubMed  CAS  Google Scholar 

  15. Hurwitz A, Ruhl CE, Kimler BF, et al.: Gastric function in the elderly: effects on absorption of ketoconazole. J Clin Pharmacol 2003, 43:996–1002.

    Article  PubMed  CAS  Google Scholar 

  16. Wang EJ, Lew K, Casciano CN, et al.: Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother 2002, 46:160–165.

    Article  PubMed  CAS  Google Scholar 

  17. Stein WD: Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol Rev 1997, 77:545–590.

    PubMed  CAS  Google Scholar 

  18. Dresser MJ: The MDR1 C3435T polymorphism: effects on P-glycoprotein expression/function and clinical significance. AAPS PharmSci 2001, 3:3.

    Article  PubMed  CAS  Google Scholar 

  19. Courtney R, Sansone A, Devlin D, et al.: P-glycoprotein expression and genotype: exploratory analysis of posaconazole in healthy volunteers [abstract A-40]. Presented at the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC; October 30–November 2, 2004.

  20. Weiss J, Ten Hoevel MM, Burhenne J, et al.: CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol 2009, 49:196–204.

    Article  PubMed  CAS  Google Scholar 

  21. Cordon-Cardo C, O’Brien JP, Casals D, et al.: Multidrugresistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U SA 1989, 86:695–698.

    Article  CAS  Google Scholar 

  22. Miyama T, Takanaga H, Matsuo H, et al.: P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier. Antimicrob Agents Chemother 1998, 42:1738–1744.

    PubMed  CAS  Google Scholar 

  23. Evans WE, McLeod HL: Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med 2003, 348:538–549.

    Article  PubMed  CAS  Google Scholar 

  24. Balani SK, Xu X, Arison BH, et al.: Metabolites of caspofungin acetate, a potent antifungal agent, in human plasma and urine. Drug Metab Dispos 2000, 28:1274–1278.

    PubMed  CAS  Google Scholar 

  25. Joseph JM, Jain R, Danziger LH: Micafungin: a new echinocandin antifungal. Pharmacotherapy 2007, 27:53–67.

    Article  PubMed  CAS  Google Scholar 

  26. Hebert MF, Smith HE, Marbury TC, et al.: Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J Clin Pharmacol 2005, 45:1145–1152.

    Article  PubMed  CAS  Google Scholar 

  27. Damle BD, Dowell JA, Walsky RL, et al.: In vitro and in vivo studies to characterize the clearance mechanism and potential cytochrome P450 interactions of anidulafungin. Antimicrob Agents Chemother 2009, 53:1149–1156.

    Article  PubMed  CAS  Google Scholar 

  28. Brammer KW, Farrow PR, Faulkner JK: Pharmacokinetics and tissue penetration of fluconazole in humans. Rev Infect Dis 1990, 12(Suppl 3):S318–S326.

    PubMed  Google Scholar 

  29. Huang YC, Colaizzi JL, Bierman RH, et al.: Pharmacokinetics and dose proportionality of ketoconazole in normal volunteers. Antimicrob Agents Chemother 1986, 30:206–210.

    PubMed  CAS  Google Scholar 

  30. Rodriguez RJ, Acosta D Jr: Metabolism of ketoconazole and deacetylated ketoconazole by rat hepatic microsomes and flavin-containing monooxygenases. Drug Metab Dispos 1997, 25:772–777.

    PubMed  CAS  Google Scholar 

  31. Prescribing information: Sporanox (Itraconazole) [package insert]. Ortho-McNeil-Janssen Pharmaceuticals, Inc.; Raritan, NJ: 2001.

  32. Yanni SB, Annaert PP, Augustijns P, et al.: Role of flavincontaining monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab Dispos 2008, 36:1119–1125.

    Article  PubMed  CAS  Google Scholar 

  33. Krieter P, Flannery B, Musick T, et al.: Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother 2004, 48:3543–3551.

    Article  PubMed  CAS  Google Scholar 

  34. Bozina N, Granic P, Lalic Z, et al.: Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population. Croat Med J 2003, 44:425–428.

    PubMed  Google Scholar 

  35. Ikeda Y, Umemura K, Kondo K, et al.: Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther 2004, 75:587–588.

    Article  PubMed  CAS  Google Scholar 

  36. Wang G, Lei HP, Li Z, et al.: The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol 2009, 65:281–285.

    Article  PubMed  CAS  Google Scholar 

  37. Geist MJ, Egerer G, Burhenne J, Mikus G: Safety of voriconazole in a patient with CYP2C9*2/CYP2C9*2 genotype. Antimicrob Agents Chemother 2006, 50:3227–3228.

    Article  PubMed  CAS  Google Scholar 

  38. Cashman JR: The implications of polymorphisms in mammalian flavin-containing monooxygenases in drug discovery and development. Drug Discov Today 2004, 9:574–581.

    Article  PubMed  CAS  Google Scholar 

  39. Ghosal A, Hapangama N, Yuan Y, et al.: Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos 2004, 32:267–271.

    Article  PubMed  CAS  Google Scholar 

  40. Sandhu P, Lee W, Xu X, et al.: Hepatic uptake of the novel echinocandin caspofungin. Drug Metab Dispos 2005, 33:676–682.

    Article  PubMed  CAS  Google Scholar 

  41. Arredondo G, Martinez-Jorda R, Calvo R, et al.: Protein binding of itraconazole and fluconazole in patients with chronic renal failure. Int J Clin Pharmacol Ther 1994, 32:361–364.

    PubMed  CAS  Google Scholar 

  42. Arredondo G, Suarez E, Calvo R, et al.: Serum protein binding of itraconazole and fluconazole in patients with diabetes mellitus. J Antimicrob Chemother 1999, 43:305–307.

    Article  PubMed  CAS  Google Scholar 

  43. Mouton JW, van Peer A, de Beule K, et al.: Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrob Agents Chemother 2006, 50:4096–4102.

    Article  PubMed  CAS  Google Scholar 

  44. Roffey SJ, Cole S, Comby P, et al.: The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos 2003, 31:731–741.

    Article  PubMed  CAS  Google Scholar 

  45. Greer ND: Posaconazole (Noxafil): a new triazole antifungal agent. Proc Bayl Univ Med Cent 2007, 20:188–196.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa D. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.D. Pharmacogenomics of systemic antifungal agents. Curr Fungal Infect Rep 3, 111–116 (2009). https://doi.org/10.1007/s12281-009-0015-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-009-0015-9

Keywords

Navigation