Skip to main content
Log in

Effects of Feather Hydrolysates Generated by Probiotic Bacillus licheniformis WHU on Gut Microbiota of Broiler and Common carp

  • Synthetic Microbiology and Biotechnology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Due to the ever-increasing demand for meat, it has become necessary to identify cheap and sustainable sources of protein for animal feed. Feathers are the major byproduct of poultry industry, which are rich in hard-to-degrade keratin protein. Previously we found that intact feathers can be digested into free amino acids, short peptides, and nano-/micro-keratin particles by the strain Bacillus licheniformis WHU in water, and the resulting feather hydrolysates exhibit prebiotic effects on mice. To explore the potential utilization of feather hydrolysate in the feed industry, we investigated its effects on the gut microbiota of broilers and fish. Our results suggest that feather hydrolysates significantly decrease and increase the diversity of gut microbial communities in broilers and fish, respectively. The composition of the gut microbiota was markedly altered in both of the animals. The abundance of bacteria with potentially pathogenic phenotypes in the gut microbial community of the fish significantly decreased. Staphylococcus spp., Pseudomonas spp., Neisseria spp., Achromobacter spp. were significantly inhibited by the feather hydrolysates. In addition, feather hydrolysates significantly improved proteolytic activity in the guts of broilers and fish. In fish, the expression levels of ZO-1 and TGF-α significantly improved after administration of feather hydrolysates. The results presented here suggest that feather hydrolysates generated by B. licheniformis WHU could be an alternative protein source in aquaculture and could exert beneficial effects on fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used in this study are available from the corresponding author upon request.

References

  • Alahyaribeik, S., & Ullah, A. (2020). Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. International Journal of Biological Macromolecules, 148, 449–456.

    Article  CAS  PubMed  Google Scholar 

  • Al-Shawi, S. G., Dang, D. S., Yousif, A. Y., Al-Younis, Z. K., Najm, T. A., & Matarneh, S. K. (2020). The potential use of probiotics to improve animal health, efficiency, and meat quality: A review. Agriculture, 10, 452.

    Article  CAS  Google Scholar 

  • Anadón, A., Ares, I., Martínez-Larrañaga, M. R., & Martínez, M. A. (2019). Prebiotics and probiotics in feed and animal health. In R. Gupta, A. Srivastava, & R. Lall (Eds.), Nutraceuticals in veterinary medicine (pp. 261–285). Springer.

    Chapter  Google Scholar 

  • Bhari, R., Kaur, M., & Sarup Singh, R. (2021). Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Current Microbiology, 78, 2212–2230.

    Article  CAS  PubMed  Google Scholar 

  • Callegaro, K., Brandelli, A., & Daroit, D. J. (2019). Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Management, 95, 399–415.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, S. W., & Moore, J. E. (2003). Feed quality and animal performance. Field Crops Research, 84, 17–29.

    Article  Google Scholar 

  • Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman, M., Mulet, M., Altun, S., Saticioglu, I. B., Ozdemir, B., Ajmi, N., Lalucat, J., & García-Valdés, E. (2021). The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture, 535, 736369.

    Article  CAS  Google Scholar 

  • Gryaznova, M., Dvoretskaya, Y., Burakova, I., Syromyatnikov, M., Popov, E., Kokina, A., Mikhaylov, E., & Popov, V. (2022). Dynamics of changes in the gut microbiota of healthy mice fed with lactic acid bacteria and Bifidobacteria. Microorganisms, 10, 1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinane, C. M., Tadrous, A., Fouhy, F., Ryan, C. A., Dempsey, E. M., Murphy, B., Andrews, E., Cotter, P. D., Stanton, C., & Ross, R. P. (2013). Microbial composition of human appendices from patients following appendectomy. Mbio, 4, e00366-12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan, M. A., Abol-Fotouh, D., Omer, A. M., Tamer, T. M., & Abbas, E. (2020). Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. International Journal of Biological Macromolecules, 154, 567–583.

    Article  CAS  PubMed  Google Scholar 

  • Isler, B., Kidd, T. J., Stewart, A. G., Harris, P., & Paterson, D. L. (2020). Achromobacter infections and treatment options. Antimicrobial Agents and Chemotherapy, 64, e01025-e1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke, F., Gao, Y., Liu, L., Zhang, C., Wang, Q., & Gao, X. (2020). Comparative analysis of the gut microbiota of grass carp fed with chicken faeces. Environmental Science and Pollution Research, 27, 32888–32898.

    Article  CAS  PubMed  Google Scholar 

  • Ke, F., Xie, P., Yang, Y., Yan, L., Guo, A., Yang, J., Zhang, J., Liu, L., Wang, Q., & Gao, X. (2021). Effects of nisin, cecropin, and Penthorum chinense Pursh on the intestinal microbiome of common carp (Cyprinus carpio). Frontiers in Nutrition, 8, 729437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korniłłowicz-Kowalska, T., & Bohacz, J. (2011). Biodegradation of keratin waste: Theory and practical aspects. Waste Management, 31, 1689–1701.

    Article  PubMed  Google Scholar 

  • Koyanagi, T., Sakamoto, M., Takeuchi, Y., Ohkuma, M., & Izumi, Y. (2010). Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. Journal of Oral Microbiology, 24, 2.

    Google Scholar 

  • Kyriakis, S. C., Tsiloyiannis, V. K., Vlemmas, J., Sarris, K., Tsinas, A. C., Alexopoulos, C., & Jansegers, L. (1999). The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Research in Veterinary Science, 67, 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Lei, K., Li, Y. L., Yu, D. Y., Rajput, I. R., & Li, W. F. (2013). Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poultry Science, 92, 2389–2395.

    Article  CAS  PubMed  Google Scholar 

  • Lemes, A. C., Sala, L., Ores Jda, C., Braga, A. R., Egea, M. B., & Fernandes, K. F. (2016). A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Science, 17, 950.

    Article  Google Scholar 

  • Li, Q. (2019). Progress in microbial degradation of feather waste. Frontiers in Microbiology, 10, 2717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Liu, M., Zhou, J., Hou, B., Su, X., Liu, Z., Yuan, J., & Li, M. (2019). Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Beneficial Microbes, 10, 543–553.

    Article  CAS  PubMed  Google Scholar 

  • Lin, X., Kelemen, D. W., Miller, E. S., & Shih, J. C. (1995). Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Applied Environmental Microbiology, 61, 1469–1474.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, B., Bessei, W., Vahjen, W., Zentek, J., & Harlander-Matauschek, A. (2012). Dietary inclusion of feathers affects intestinal microbiota and microbial metabolites in growing Leghorn-type chickens. Poultry Science, 91, 1506–1513.

    Article  CAS  PubMed  Google Scholar 

  • Mikx, F., & De Jong, M. (1987). Keratinolytic activity of cutaneous and oral bacteria. Infection and Immunity, 55, 621–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muras, A., Romero, M., Mayer, C., & Otero, A. (2021). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology, 41, 609–627.

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., Yang, J., Xie, P., Zhang, J., Ke, F., Guo, X., Liang, M., Liu, L., Wang, Q., & Gao, X. (2021). Enhancement of activity and thermostability of keratinase from Pseudomonas aeruginosa CCTCC AB2013184 by directed evolution with noncanonical amino acids. Frontiers in Bioenginering and Biotechnology, 9, 770907.

    Article  Google Scholar 

  • Qi, X., Zhang, Y., Zhang, Y., Luo, F., Song, K., Wang, G., & Ling, F. (2023). Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome, 11, 135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimnahal, S., Meimandipour, A., Fayazi, J., Asghar Karkhane, A., Shamsara, M., Beigi Nassiri, M., Mirzaei, H., Hamblin, M. R., Tarrahimofrad, H., Bakherad, H., et al. (2023). Biochemical and molecular characterization of novel keratinolytic protease from Bacillus licheniformis (KRLr1). Frontiers in Microbiology, 14, 1132760.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scanes, C. G. (2018). Animal agriculture: Livestock, poultry, and fish aquaculture. In C. G. Scanes & S. R. Toukhsati (Eds.), Animals and human society (pp. 133–179). Academic Press.

    Chapter  Google Scholar 

  • Shavandi, A., Silva, T. H., Bekhit, A. A., & Bekhit, A. E. A. (2017). Keratin: Dissolution, extraction and biomedical application. Biomaterial Science, 5, 1699–1735.

    Article  CAS  Google Scholar 

  • Vitali, B., Pugliese, C., Biagi, E., Candela, M., Turroni, S., Bellen, G., Donders, G. G., & Brigidi, P. (2007). Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR. Applied Environmental Microbiology, 73, 5731–5741.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, A., Zhang, Z., Ding, Q., Yang, Y., Bindelle, J., Ran, C., & Zhou, Z. (2021). Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes, 13, 1–15.

    Article  PubMed  Google Scholar 

  • Wang, S., Song, F., Gu, H., Shu, Z., Wei, X., Zhang, K., Zhou, Y., Jiang, L., Wang, Z., Li, J., Luo, H., & Liang, W. (2022). Assess the diversity of gut microbiota among healthy adults for forensic application. Microbial Cell Factories, 21, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward, T., Larson, J., Meulemans, J., Hillmann, B., Lynch, J., Sidiropoulos, D., Spear, J. R., Caporaso, G., Blekhman, R., Knight, R., et al. (2017). BugBase predicts organism-level microbiome phenotypes. Biorxiv. https://doi.org/10.1101/133462

    Article  Google Scholar 

  • Weyand, N. J. (2017). Neisseria models of infection and persistence in the upper respiratory tract. Pathogens and Disease. https://doi.org/10.1093/femspd/ftx031

    Article  PubMed  Google Scholar 

  • Wu, L., Lao, X., Wu, Y., Zhang, J., Liang, M., Yang, Y., & Gao, X. (2023). Insights into effects of sodium phytate on gut microbiome of mice by high-throughput sequencing. Biotechnology & Biotechnological Equipment, 37, 2220825.

    Article  Google Scholar 

  • Wu, L., Ran, L., Wu, Y., Liang, M., Zeng, J., Ke, F., Wang, F., Yang, J., Lao, X., Liu, L., et al. (2022). Oral administration of 5-Hydroxytryptophan restores gut microbiota dysbiosis in a mouse model of depression. Frontiers in Microbiology, 13, 864571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Z. R., Hu, C. H., Xia, M. S., Zhan, X. A., & Wang, M. Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 82, 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  • Yi, D., Xing, J., Gao, Y., Pan, X., Xie, P., Yang, J., Wang, Q., & Gao, X. (2020). Enhancement of keratin-degradation ability of the keratinase KerBL from Bacillus licheniformis WHU by proximity-triggered chemical crosslinking. International Journal of Biological Macromolecules, 163, 1458–1470.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Liang, M., Wu, L., Yang, Y., Sun, Y., Wang, Q., & Gao, X. (2023). Bioconversion of feather waste into bioactive nutrients in water by Bacillus licheniformis WHU. Applied Microbiology and Biotechnology, 107, 7055–7070.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Lv, J., Pan, L., & Zhang, Y. (2018). Roles and applications of probiotic Lactobacillus strains. Applied Microbiology and Biotechnology, 102, 8135–8143.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S., Han, M., Liu, S., Fan, L., Shi, H., & Li, P. (2022). Composition and diverse differences of intestinal microbiota in ulcerative colitis patients. Frontiers in Cellular and Infection Microbiology, 12, 953962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Collaborative Fund from Luzhou Government and Southwest Medical University (No. 2020LZXNYDJ29) and a Fund from Southwest Medical University (No. 2021ZKMS045).

Author information

Authors and Affiliations

Authors

Contributions

FK, YS, TH: Study design, experiments, and data analysis; YW, SL, and WL: experiments; QW: Writing and revision of the manuscript; XG: Study design, data analysis, writing and revision, and funding.

Corresponding authors

Correspondence to Qin Wang or Xiaowei Gao.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Ethical Statements

The animal experiments in the study were approved by the Ethics Committee of Southwest Medical University (No. 20230226-009) and followed the Guidelines for Care and Use of Laboratory Animals of the Southwest Medical University.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3020 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, K., Sun, Y., He, T. et al. Effects of Feather Hydrolysates Generated by Probiotic Bacillus licheniformis WHU on Gut Microbiota of Broiler and Common carp. J Microbiol. (2024). https://doi.org/10.1007/s12275-024-00118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12275-024-00118-z

Keywords

Navigation