Skip to main content
Log in

Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest

  • Evolutionary Microbiology and Systematics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038T, from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10–37 °C, pH 4–10, and 0–6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C15:0 and iso-C17:0. Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038T has the highest similarity with Spelaeicoccus albus DSM 26341 T (96.02%). ZFBP1038T formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038T was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA–DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038T and representative reference strains were 19.3–25.2, 68.0–71.0, and 52.8–60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038T represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038T (= EE 014 T = GDMCC 1.3024 T = JCM 35335 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All genomic data from this study have been deposited in the NCBI Genbank (https://submit.ncbi.nlm.nih.gov/subs/genome/), with the registry number CP090958, JAJTWV000000000, JAJTWX000000000 and JAJTWW000000000.

References

  • Alanjary, M., Steinke, K., & Ziemert, N. (2019). AutoMLST: An automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Research, 47, W276–W282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., et al. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Besemer, J., & Borodovsky, M. (2005). GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research, 33, W451–W454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadra, B., Raghukumar, C., Pindi, P. K., & Shivaji, S. (2008). Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. International Journal of Systematic and Evolutionary Microbiology, 58, 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Bland, C., Ramsey, T. L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N. C., & Hugenholtz, P. (2007). CRISPR Recognition Tool (CRT): A tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 8, 209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breed, R. S. (1953). The families developed from Bacteriaceae Cohn with a description of the family Brevibacteriaceae Breed. Riassunti delle Communicazione VI. Congresso Internazionale Di Microbiologia, Roma, 1, 10–15.

    Google Scholar 

  • Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek, R., Parrello, B., Pusch, G. D., et al. (2015). RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5, 8365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, P., Zhang, L., Wang, J., Ruan, J., Han, X., & Huang, Y. (2016). Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges. International Journal of Systematic and Evolutionary Microbiology, 66, 5268–5274.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Kang, M. S., Woo, S. G., Jin, L., Kim, K. K., Park, J., Lee, M., & Lee, S. T. (2013). Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture. International Journal of Systematic and Evolutionary Microbiology, 63, 152–157.

    Article  CAS  PubMed  Google Scholar 

  • Deng, T., Lu, H., Qian, Y., Chen, X., Yang, X., Guo, J., Sun, G., & Xu, M. (2020). Brevibacterium rongguiense sp. nov., isolated from freshwater sediment. International Journal of Systematic and Evolutionary Microbiology, 70, 5205–5210.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Biology, 20, 406–416.

    Article  Google Scholar 

  • Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74, 2461–2470.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Gordon, R. E., Barnett, D. A., Handerhan, J. E., & Pang, C. H. N. (1974). Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. International Journal of Systematic Bacteriology, 24, 54–63.

    Article  Google Scholar 

  • Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11, 119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, M. S., Quan, X. T., Siddiqi, M. Z., Liu, Q., Kim, S. Y., Wee, J. H., & Im, W. T. (2018). Brevibacterium anseongense sp. nov., isolated from soil of ginseng field. Journal of Microbiology, 56, 706–712.

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer, P., & Kroppenstedt, R. M. (1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Canadian Journal of Microbiology, 42, 989–1005.

    Article  Google Scholar 

  • Kim, J., Srinivasan, S., You, T., Bang, J. J., Park, S., & Lee, S. S. (2013). Brevibacterium ammoniilyticum sp. nov., an ammonia-degrading bacterium isolated from sludge of a wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology, 63, 1111–1118.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Oh, H. S., Park, S. C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64, 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Komagata, K., & Suzuki, K. I. (1988). Lipid and Cell-Wall Analysis in Bacterial Systematics. Methods in Microbiology, 19, 161–207.

    Article  Google Scholar 

  • Kroppenstedt, R. M. (1982). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. Journal of Liquid Chromatography, 5, 2359–2367.

    Article  CAS  Google Scholar 

  • Kumar, A., İnce, İA., Katı, A., & Chakraborty, R. (2013). Brevibacterium siliguriense sp. nov., a facultatively oligotrophic bacterium isolated from river water. International Journal of Systematic and Evolutionary Microbiology, 63, 511–515.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurup, P. V., & Schmitt, J. A. (1973). Numerical taxonomy of Nocardia. Canadian Journal of Microbiology, 19, 1035–1048.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. D. (2008). Brevibacterium marinum sp. nov., isolated from seawater. International Journal of Systematic and Evolutionary Microbiology, 58, 500–504.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. D. (2013). Spelaeicoccus albus gen. nov., sp. nov., an actinobacterium isolated from a natural cave. International Journal of Systematic and Evolutionary Microbiology, 63, 3958–3963.

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin, D. E., Patel, P. V., Alshamaony, L., & Goodfellow, M. (1977). Polar lipid composition in the classification of Nocardia and related Bacteria. International Journal of Systematic Bacteriology, 27, 104–117.

    Article  CAS  Google Scholar 

  • Nicholson, A. C., Gulvik, C. A., Whitney, A. M., Humrighouse, B. W., Bell, M. E., Holmes, B., Steigerwalt, A. G., Villarma, A., Sheth, M., Batra, D., et al. (2020). Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. International Journal of Systematic and Evolutionary Microbiology, 70, 4432–4450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., et al. (2014). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Research, 42, D206–D214.

    Article  CAS  PubMed  Google Scholar 

  • Pei, S., Xie, F., Niu, S., Ma, L., Zhang, R., & Zhang, G. (2020). Brevibacterium profundi sp. nov., isolated from deep-sea sediment of the Western Pacific Ocean. International Journal of Systematic and Evolutionary Microbiology, 70, 5818–5823.

    Article  CAS  PubMed  Google Scholar 

  • Pei, S., Niu, S., Xie, F., Wang, W., Zhang, S., & Zhang, G. (2021). Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments. Journal of Microbiology, 59, 898–910.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-R, L. M., & Konstantinidis, K. T. (2014). Bypassing cultivation to identify bacterial species: Culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe, 9, 111–118.

    Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Stackebrandt, E., Rainey, F., & Ward-Rainey, N. (1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic Bacteriology, 47, 479–491.

    Article  Google Scholar 

  • Tang, S. K., Wang, Y., Schumann, P., Stackebrandt, E., Lou, K., Jiang, C. L., Xu, L. H., & Li, W. J. (2008). Brevibacterium album sp. nov., a novel actinobacterium isolated from a saline soil in China. International Journal of Systematic and Evolutionary Microbiology, 58, 574–577.

    Article  CAS  PubMed  Google Scholar 

  • Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13, e1005595.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Yokota, A., Tamura, T., Hasegawa, T., & Huang, L. H. (1993). Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. International Journal of Systematic Bacteriology, 43, 805–812.

    Article  Google Scholar 

  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017a). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S. H., Ha, S. M., Lim, J., Kwon, S., & Chun, J. (2017b). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek, 110, 1281–1286.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Wang, S., & Wang, L. (2016). Sediminivirga luteola gen. nov., sp. nov., a member of the family Brevibacteriaceae, isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 66, 1494–1498.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Song, Q., Sang, J., & Li, Z. (2023). Brevibacterium spongiae sp. nov., isolated from marine sponge Hymeniacidon sp. International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijsem.0.005869

    Article  PubMed  Google Scholar 

  • Zhi, X. Y., Li, W. J., & Stackebrandt, E. (2009). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. International Journal of Systematic and Evolutionary Microbiology, 59, 589–608.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R and D Program of China (2019YFE0121100), and the National Natural Science Foundation of China (42071099, 42371156).

Author information

Authors and Affiliations

Authors

Contributions

M.T., W.Z., G.Z., Y.W., G.L., and T.C. conceived and designed the study. M.T., G.Z., A.B., Y.W., and X.Y. carried out the experiments. M.T., X.Y., and S.W. performed data analysis and figure drawing. M.T. and S.W. wrote the manuscript. W.Z., A.B., G.L., T.C., Y.W., and S.W. supervised this work and edited the manuscript. All authors read and approved the final draft.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 929 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Wu, S., Zhang, W. et al. Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest. J Microbiol. (2024). https://doi.org/10.1007/s12275-024-00108-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12275-024-00108-1

Keywords

Navigation