Skip to main content
Log in

Analysis of phylogenetic markers for classification of a hydrogen peroxide producing Streptococcus oralis isolated from saliva by a newly devised differential medium

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Hydrogen peroxide (H2O2) is produced by alpha-hemolytic streptococci in aerobic conditions. However, the suitable method for detection of H2O2-producing streptococci in oral microbiota has not been setup. Here we show that o-dianisidine dye and horseradish peroxidase were useful in tryptic soy agar medium to detect and isolate H2O2-producing bacteria with the detection limit of one target colony in > 106 colony-forming units. As a proof, we isolated the strain HP01 (KCTC 21190) from a saliva sample using the medium and analyzed its characteristics. Further tests showed that the strain HP01 belongs to Streptococcus oralis in the Mitis group and characteristically forms short-chain streptococcal cells with a high capacity of acid tolerance and biofilm formation. The genome analysis revealed divergence of the strain HP01 from the type strains of S. oralis. They showed distinctive phylogenetic distances in their ROS-scavenging proteins, including superoxide dismutase SodA, thioredoxin TrxA, thioredoxin reductase TrxB, thioredoxin-like protein YtpP, and glutaredoxin-like protein NrdH, as well as a large number of antimicrobial resistance genes and horizontally transferred genes. The concatenated ROS-scavenging protein sequence can be used to identify and evaluate Streptococcus species and subspecies based on phylogenetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajdić, D., McShan, W.M., McLaughlin, R.E., Savić, G., Chang, J., Carson, M.B., Primeaux, C., Tian, R., Kenton, S., Jia, H., et al. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 99, 14434–14439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Angeletti, S., Dicuonzo, G., Avola, A., Crea, F., Dedej, E., Vailati, F., Farina, C., and De Florio, L. 2015. Viridans group streptococci clinical isolates: MALDI-TOF mass spectrometry versus gene sequence-based identification. PLoS ONE 10, e0120502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aroutcheva, A., Gariti, D., Simon, M., Shott, S., Faro, J., Simoes, J.A., Gurguis, A., and Faro, S. 2001. Defense factors of vaginal lactobacilli. Am. J. Obstet. Gynecol. 185, 375–379.

    Article  CAS  PubMed  Google Scholar 

  • Bond, R.J., Hansel, C.M., and Voelker, B.M. 2020. Heterotrophic bacteria exhibit a wide range of rates of extracellular production and decay of hydrogen peroxide. Front. Mar. Sci. 7, 72.

    Article  Google Scholar 

  • Buxton, R. 2005. Blood Agar Plates and Hemolysis Protocols. American Society for Microbiology. https://asm.org/getattachment/7ec0de2b-bb16-4f6e-ba07-2aea25a43e76/protocol-28.

  • Chan, J.M., Gori, A., Nobbs, A.H., and Heyderman, R.S. 2020. Streptococcal serine-rich repeat proteins in colonization and disease. Front. Microbiol. 11, 593356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chasteen, T.G., Fuentes, D.E., Tantaleán, J.C., and Vásquez, C.C. 2009. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol. Rev. 33, 820–832.

    Article  CAS  PubMed  Google Scholar 

  • Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods. 10, 563–569.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y., Pham, H., Nguyen, M.P., Tran, L.V.H., Kim, J., Kim, S., Lee, C.W., Song, J., and Kim, Y.H. 2021. A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1–13. Commun. Biol. 4, 582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, I.B., Vedel, C., Clausen, M.L., Kjærulff, S., Agner, T., and Nielsen, D.S. 2021. Targeted screening of lactic acid bacteria with antibacterial activity toward Staphylococcus aureus clonal complex type 1 associated with atopic dermatitis. Front. Microbiol. 12, 733847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coykendall, A.L. 1989. Classification and identification of the viridans streptococci. Clin. Microbiol. Rev. 2, 315–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cundell, D.R., Weiser, J.N., Shen, J., Young, A., and Tuomanen, E.I. 1995. Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect. Immun. 63, 757–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya, R.S. and Speck, M.L. 1968. Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J. Dairy Sci. 51, 1568–1572.

    Article  CAS  PubMed  Google Scholar 

  • Denapaite, D., Brückner, R., Nuhn, M., Reichmann, P., Henrich, B., Maurer, P., Schähle, Y., Selbmann, P., Zimmermann, W., Wambutt, R., et al. 2010. The genome of Streptococcus mitis B6 — what is a commensal? PLoS ONE 5, e9426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Detrich, H.W.3rd, Kieran, M.W., Chan, F.Y., Barone, L.M., Yee, K., Rundstadler, J.A., Pratt, S., Ransom, D., and Zon, L.I. 1995. Intraembryonic hematopoietic cell migration during vertebrate development. Proc. Natl. Acad. Sci. USA 92, 10713–10717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driessens, N., Versteyhe, S., Ghaddhab, C., Burniat, A., De Deken, X., Van Sande, J., Dumont, J.E., Miot, F., and Corvilain, B. 2009. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr. Relat. Cancer 16, 845–856.

    Article  CAS  PubMed  Google Scholar 

  • Enright, M.C. and Spratt, B.G. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144, 3049–3060.

    Article  CAS  PubMed  Google Scholar 

  • Erttmann, S.F. and Gekara, N.O. 2019. Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nat. Commun. 10, 3493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., et al. 2014. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230.

    Article  CAS  PubMed  Google Scholar 

  • Galloway-Peña, J., Sahasrabhojane, P., Tarrand, J., Han, X.Y., and Shelburne, S.A. 2014. GyrB polymorphisms accurately assign invasive viridans group streptococcal species. J. Clin. Microbiol. 52, 2905–2912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, X.Y., Zhi, X.Y., Li, H.W., Klenk, H.P., and Li, W.J. 2014. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS ONE 9, e101229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gobbetti, M. and Calasso, M. 2014. Streptococcus: introduction. In Batt, C.A. and Tortorello, M.L. (eds.) Encyclopedia of Food Microbiology, 2nd edn., pp. 535–553. Academic Press, San Diego, California, USA.

    Chapter  Google Scholar 

  • Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Grinnell, A., Sloan, R., and Morgenstein, R.M. 2022. Cell density-dependent antibiotic tolerance to inhibition of the elongation machinery requires fully functional PBP1B. Commun. Biol. 5, 107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haanperä, M., Jalava, J., Huovinen, P., Meurman, O., and Rantakokko-Jalava, K. 2007. Identification of alpha-hemolytic streptococci by pyrosequencing the 16S rRNA gene and by use of VITEK 2. J. Clin. Microbiol. 45, 762–770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hertzberger, R., Arents, J., Dekker, H.L., Pridmore, R.D., Gysler, C., Kleerebezem, M., and de Mattos, M.J. 2014. H2O2 production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase. Appl. Environ. Microbiol. 80, 2229–2239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillier, S.L., Krohn, M.A., Klebanoff, S.J., and Eschenbach, D.A. 1992. The relationship of hydrogen peroxide-producing lactobacilli to bacterial vaginosis and genital microflora in pregnant women. Obstet. Gynecol. 79, 369–373.

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314.

    Article  CAS  PubMed  Google Scholar 

  • Ito, A., Sato, Y., Kudo, S., Sato, S., Nakajima, H., and Toba, T. 2003. The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Curr. Microbiol. 47, 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, A., Scholz, C.F.P., and Kilian, M. 2016. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus. Int. J. Syst. Evol. Microbiol. 66, 4803–4820.

    Article  CAS  PubMed  Google Scholar 

  • Kamber, M., Flückiger-Isler, S., Engelhardt, G., Jaeckh, R., and Zeiger, E. 2009. Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity. Mutagenesis 24, 359–366.

    Article  CAS  PubMed  Google Scholar 

  • Kilian, M., Mikkelsen, L., and Henrichsen, J. 1989. Taxonomic study of Viridans streptococci: description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). Int. J. Syst. Bacteriol. 39, 471–484.

    Article  Google Scholar 

  • Kim, W., Park, H.K., Hwang, W.J., and Shin, H.S. 2013. Simultaneous detection of Streptococcus pneumoniae, S. mitis, and S. oralis by a novel multiplex PCR assay targeting the gyrB gene. J. Clin. Microbiol. 51, 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knaus, U.G., Hertzberger, R., Pircalabioru, G.G., Yousefi, S.P., and Branco Dos Santos, F. 2017. Pathogen control at the intestinal mucosa — H2O2 to the rescue. Gut Microbes 8, 67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Sarkar, S.K., Ghosh, D., and Ghosh, A.S. 2012. Deletion of penicillin-binding protein 1b impairs biofilm formation and motility in Escherichia coli. Res. Microbiol. 163, 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Lisher, J.P., Tsui, H.T., Ramos-Montanez, S., Hentchel, K.L., Martin, J.E., Trinidad, J.C., Winkler, M.E., and Giedroc, D.P. 2017. Biological and chemical adaptation to endogenous hydrogen peroxide production in Streptococcus pneumoniae D39. mSphere 2, e00291–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mager, D.L., Ximenez-Fyvie, L.A., Haffajee, A.D., and Socransky, S.S. 2003. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol. 30, 644–654.

    Article  PubMed  Google Scholar 

  • Maruyama, F., Kobata, M., Kurokawa, K., Nishida, K., Sakurai, A., Nakano, K., Nomura, R., Kawabata, S., Ooshima, T., Nakai, K., et al. 2009. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics 10, 358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDevitt, E., Khan, F., Scasny, A., Thompson, C.D., Eichenbaum, Z., McDaniel, L.S., and Vidal, J.E. 2020. Hydrogen peroxide production by Streptococcus pneumoniae results in alpha-hemolysis by oxidation of oxy-hemoglobin to met-hemoglobin. mSphere 5, e01117–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGilligan, V.E., Gregory-Ksander, M.S., Li, D., Moore, J.E., Hodges, R.R., Gilmore, M.S., Moore, T.C., and Dartt, D.A. 2013. Staphylococcus aureus activates the NLRP3 inflammasome in human and rat conjunctival goblet cells. PLoS ONE 8, e74010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MIDI. 2012. Sherlock Microbial Identification System version 6.2. MIS Operating Manual. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Müller, H.E. 1985. Detection of hydrogen peroxide produced by microorganisms on an ABTS peroxidase medium. Zentralbl. Bakteriol. Mikrobiol. Hyg. A. 259, 151–154.

    PubMed  Google Scholar 

  • Nakano, S., Fujisawa, T., Ito, Y., Chang, B., Matsumura, Y., Yamamoto, M., Suga, S., Ohnishi, M., and Nagao, M. 2019. Penicillin-binding protein typing, antibiotic resistance gene identification, and molecular phylogenetic analysis of meropenem-resistant Streptococcus pneumoniae serotype 19A-CC3111 strains in Japan. Antimicrob. Agents Chemother. 63, e00711–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okahashi, N., Sumitomo, T., Nakata, M., Sakurai, A., Kuwata, H., and Kawabata, S. 2014. Hydrogen peroxide contributes to the epithelial cell death induced by the oral mitis group of streptococci. PLoS ONE 9, e88136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez, J.M., Calderón, I.L., Arenas, F.A., Fuentes, D.E., Pradenas, G.A., Fuentes, E.L., Sandoval, J.M., Castro, M.E., Elías, A.O., and Vásquez, C.C. 2007. Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS ONE 2, e211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pericone, C.D., Overweg, K., Hermans, P.W., and Weiser, J.N. 2000. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun. 68, 3990–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabe, L.K. and Hillier, S.L. 2003. Optimization of media for detection of hydrogen peroxide production by Lactobacillus species. J. Clin. Microbiol. 41, 3260–3264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Rojas, A., Kim, J.J., Johnston, P.R., Makarova, O., Eravci, M., Weise, C., Hengge, R., and Rolff, J. 2020. Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLoS Genet. 16, e1008649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronis, A., Brockman, K., Singh, A.K., Gaytán, M.O., Wong, A., McGrath, S., Owen, C.D., Magrini, V., Wilson, R.K., van der Linden, M., et al. 2019. Streptococcus oralis subsp. dentisani produces monolateral serine-rich repeat protein fibrils, one of which contributes to saliva binding via sialic acid. Infect. Immun. 87, e00406–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, M., Seki, M., Iida, K., Nakayama, H., and Yoshida, S. 2007. A novel agar medium to detect hydrogen peroxide-producing bacteria based on the prussian blue-forming reaction. Microbiol. Immunol. 51, 889–892.

    Article  CAS  PubMed  Google Scholar 

  • Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.

    Article  CAS  PubMed  Google Scholar 

  • Semedo, T., Almeida Santos, M., Martins, P., Silva Lopes, M.F., Figueiredo Marques, J.J., Tenreiro, R., and Barreto Crespo, M.T. 2003. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J. Clin. Microbiol. 41, 2569–2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland, K.M., Wankel, S.D., and Hansel, C.M. 2020. Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proc. Natl. Acad. Sci. USA 117, 3433–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., and Ostell, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, C.C., Emmel, V.E., Fonseca, E.L., Marin, M.A., and Vicente, A.C.P. 2013. Streptococcal taxonomy based on genome sequence analyses. F1000Res. 2, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Velsko, I.M., Perez, M.S., and Richards, V.P. 2019. Resolving phylogenetic relationships for Streptococcus mitis and Streptococcus oralis through core- and pan-genome analyses. Genome Biol. Evol. 11, 1077–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waris, G. and Ahsan, H. 2006. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog. 5, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen, Z.T., Bitoun, J.P., and Liao, S. 2015. PBP1a-deficiency causes major defects in cell division, growth and biofilm formation by Streptococcus mutans. PLoS ONE 10, e0124319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whatmore, A.M., Efstratiou, A., Pickerill, A.P., Broughton, K., Woodard, G., Sturgeon, D., George, R., and Dowson, C.G. 2000. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of “Atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect. Immun. 68, 1374–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiley, R.A. and Beighton, D. 1998. Current classification of the oral streptococci. Oral Microbiol. Immunol. 13, 195–216.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C.H., Apweiler, R., Bairoch, A., Natale, D.A., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., et al. 2006. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 34, D187–D191.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Gordon, O., Jiang, W., Antezana, B.S., Angulo-Zamudio, U.A., Del Rio, C., Moller, A., Brissac, T., Tierney, A.R.P., Warncke, K., et al. 2019. Interaction between Streptococcus pneumoniae and Staphylococcus aureus generates OH radicals that rapidly kill Staphylococcus aureus strains. J. Bacteriol. 201, e00474–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a cooperative research program for Agricultural Science & Technology Development, Rural Development Administration (Grant No. PJ01497402 to HGH) and by an internal research project of the Research Institute of Medical Science, Daegu Catholic University School of Medicine (Grant no. 201621 to YHK)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hor-Gil Hur or Yong-Hak Kim.

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interests.

Ethical Statement This study was reviewed and approved by the ethics committee of the DCU medical centre (IRB protocol number CR-16-027) for the microbiological testing of saliva without disclosure of private information and obtained informed consent from the sample donor.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H., Tran, T.D.T., Yang, Y. et al. Analysis of phylogenetic markers for classification of a hydrogen peroxide producing Streptococcus oralis isolated from saliva by a newly devised differential medium. J Microbiol. 60, 795–805 (2022). https://doi.org/10.1007/s12275-022-2261-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2261-2

Keywords

Navigation