Skip to main content
Log in

Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ogataea parapolymorpha (Hansenula polymorpha DL-1) is a thermotolerant methylotrophic yeast with biotechnological applications. Here, O. parapolymorpha genes whose expression is induced in response to heat shock were identified by transcriptome analysis and shown to possess heat shock elements (HSEs) in their promoters. The function of O. parapolymorpha HSF1 encoding a putative heat shock transcription factor 1 (OpHsf1) was characterized in the context of heat stress response. Despite exhibiting low sequence identity (26%) to its Saccharomyces cerevisiae homolog, OpHsf1 harbors conserved domains including a DNA binding domain (DBD), domains involved in trimerization (TRI), transcriptional activation (AR1, AR2), transcriptional repression (CE2), and a C-terminal modulator (CTM) domain. OpHSF1 could complement the temperature sensitive (Ts) phenotype of a S. cerevisiae hsf1 mutant. An O. parapolymorpha strain with an H221R mutation in the DBD domain of OpHsf1 exhibited significantly retarded growth and a Ts phenotype. Intriguingly, the expression of heat-shock-protein-coding genes harboring HSEs was significantly decreased in the H221R mutant strain, even under non-stress conditions, indicating the importance of the DBD for the basal growth of O. parapolymorpha. Notably, even though the deletion of C-terminal domains (ΔCE2, ΔAR2, ΔCTM) of OpHsf1 destroyed complementation of the growth defect of the S. cerevisiae hsf1 strain, the C-terminal domains were shown to be dispensable in O. parapolymorpha. Overexpression of OpHsf1 in S. cerevisiae increased resistance to transient heat shock, supporting the idea that OpHsf1 could be useful in the development of heat-shock-resistant yeast host strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin, J., Ananthan, J., and Voellmy, R. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8, 3761–3769.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amorós, M. and Estruch, F. 2001. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol. Microbiol. 39, 1523–1532.

    Article  PubMed  Google Scholar 

  • Barna, J., Csermely, P., and Vellai, T. 2018. Roles of heat shock factor 1 beyond the heat shock response. Cell. Mol. Life Sci. 75, 2897–2916.

    Article  CAS  PubMed  Google Scholar 

  • Boy-Marcotte, E., Lagniel, G., Perrot, M., Bussereau, F., Boudsocq, A., Jacquet, M., and Labarre, J. 1999. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 33, 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. and Pederson, D.S. 1993. A distal heat-shock element promotes the rapid response to heat-shock of the HSP26 gene in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 7442–7448.

    Article  CAS  PubMed  Google Scholar 

  • Daggett, V. and Fersht, A. 2003. The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4, 497–502.

    Article  CAS  PubMed  Google Scholar 

  • Eastmond, D.L. and Nelson, H.C. 2006. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J. Biol. Chem. 281, 32909–32921.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto, M., Takaki, E., Hayashi, T., Kitaura, Y., Tanaka, Y., Inouye, S., and Nakai, A. 2005. Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J. Biol. Chem. 280, 34908–34916.

    Article  CAS  PubMed  Google Scholar 

  • Gellissen, G. and Scheffers, L. 2005. Editorial. FEMS Yeast Res. 5, 973–974.

    Article  CAS  Google Scholar 

  • Grably, M.R., Stanhill, A., Tell, O., and Engelberg, D. 2002. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol. Microbiol. 44, 21–35.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, J.S., Hu, Z., Thiele, D.J., and Iyer, V.R. 2004. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24, 5249–5256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, C.J., Bohm, A.A., and Nelson, H.C. 1994. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263, 224–227.

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa, N. and Sakurai, H. 2004. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol. Cell. Biol. 24, 3648–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, J., Donald, K.A., and Griffiths, D.E. 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19, 5791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Høj, A. and Jakobsen, B.K. 1994. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13, 2617–2624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou, J., Österlund, T., Liu, Z., Petranovic, D., and Nielsen, J. 2013. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 97, 3559–3568.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, H., Nojima, H., and Okayama, H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen, B.K. and Pelham, H.R. 1991. A conserved heptapeptide restrains the activity of the yeast heat-shock transcription factor. EMBO J. 10, 369–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H., Thak, E.J., Yeon, J.Y., Sohn, M.J., Choo, J.H., Kim, J.Y., and Kang, H.A. 2018. Functional analysis of Mpk1-mediated cell wall integrity signaling pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. J. Microbiol. 56, 72–82.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Yoo, S.J., and Kang, H.A. 2015. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 15, 1–16.

    PubMed  CAS  Google Scholar 

  • Kurtzman, C.P. 2011. A new methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. Antonie van Leeuwenhoek 100, 455–462.

    Article  CAS  PubMed  Google Scholar 

  • Kurylenko, O.O., Ruchala, J., Hryniv, O.B., Abbas, C.A., Dmytruk, K.V., and Sibirny, A.A. 2014. Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation. Microb. Cell Fact. 13, 122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, P., Fu, X., Zhang, L., Zhang, Z., Li, J., and Li, S. 2017. The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures. Biotechnol. Biofuels 10, 289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manfrão-Netto, J.H.C., Gomes, A.M.V., and Parachin, N.S. 2019. Advances in using Hansenula polymorpha as chassis for recombinant protein production. Front. Bioeng. Biotechnol. 7, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon, H.Y., Cheon, S.A., Kim, H., Agaphonov, M.O., Kwon, O., Oh, D.B., Kim, J.Y., and Kang, H.A. 2015. Hansenula polymorpha Hac1p is critical to protein N-glycosylation activity modulation, as revealed by functional and transcriptomic analyses. Appl. Environ. Microbiol. 81, 6982–6993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morano, K.A., Grant, C.M., and Moye-Rowley, W.S. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190, 1157–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlhofer, M., Berchtold, E., Stratil, C.G., Csaba, G., Kunold, E., Bach, N.C., Sieber, S.A., Haslbeck, M., Zimmer, R., and Buchner, J. 2019. The heat shock response in yeast maintains protein homeostasis by chaperoning and replenishing proteins. Cell Rep. 29, 4593–4607.

    Article  PubMed  CAS  Google Scholar 

  • Mumberg, D., Müller, R., and Funk, M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Nair, R., Shariq, M., Dhamgaye, S., Mukhopadhyay, C.K., Shaikh, S., and Prasad, R. 2017. Non-heat shock responsive roles of HSF1 in Candida albicans are essential under iron deprivation and drug defense. Biochim. Biophys. Acta Mol. Cell Res. 1864, 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Nicholls, S., MacCallum, D.M., Kaffarnik, F.A.R., Selway, L., Peck, S.C., and Brown, A.J.P. 2011. Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genet. Biol. 48, 297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto-Sotelo, J., Wiederrecht, G., Okuda, A., and Parker, C.S. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62, 807–817.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi, C., Watanabe, D., Zhou, Y., Akao, T., and Shimoi, H. 2012. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Appl. Environ. Microbiol. 78, 385–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pincus, D. 2017. Size doesn’t matter in the heat shock response. Curr. Genet. 63, 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Ravin, N.V., Eldarov, M.A., Kadnikov, V.V., Beletsky, A.V., Schneider, J., Mardanova, E.S., Smekalova, E.M., Zvereva, M.I., Dontsova, O.A., Mardanov, A.V., et al. 2013. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 14, 837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakurai, H. and Fukasawa, T. 2001. A novel domain of the yeast heat shock factor that regulates its activation function. Biochem. Biophys. Res. Commun. 285, 696–701.

    Article  CAS  PubMed  Google Scholar 

  • Scharf, K.D., Berberich, T., Ebersberger, I., and Nover, L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta Gene Regul. Mech. 1819, 104–119.

    Article  CAS  Google Scholar 

  • Schmitt, M.E., Brown, T.A., and Trumpower, B.L. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y.H., Mosser, D.D., and Morimoto, R.I. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12, 654–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solís, E.J., Pandey, J.P., Zheng, X., Jin, D.X., Gupta, P.B., Airoldi, E.M., Pincus, D., and Denic, V. 2016. Defining the essential function of yeast Hsf1 reveals a compact transcriptional program for maintaining eukaryotic proteostasis. Mol. Cell. 63, 60–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorger, P.K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62, 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Sorger, P.K. and Pelham, H.R.B. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54, 855–864.

    Article  CAS  PubMed  Google Scholar 

  • Tamai, K.T., Liu, X., Silar, P., Sosinowski, T., and Thiele, D.J. 1994. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol. Cell. Biol. 14, 8155–8165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thak, E.J., Yoo, S.J., Moon, H.Y., and Kang, H.A. 2020. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins. FEMS Yeast Res. 20, foaa009.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treger, J.M., Schmitt, A.P., Simon, J.R., and McEntee, K. 1998. Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J. Biol. Chem. 273, 26875–26879.

    Article  CAS  PubMed  Google Scholar 

  • Verghese, J., Abrams, J., Wang, Y., and Morano, K.A. 2012. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev. 76, 115–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuister, G.W., Kim, S.J., Orosz, A., Marquardt, J., Wu, C., and Bax, A. 1994. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat. Struct. Biol. 1, 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Vydra, N., Toma, A., Glowala-Kosinska, M., Gogler-Piglowska, A., and Widlak, W. 2013. Overexpression of heat shock transcription factor 1 enhances the resistance of melanoma cells to doxorubicin and paclitaxel. BMC Cancer 13, 504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiederrecht, G., Seto, D., and Parker, C.S. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54, 841–853.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y.M., Huang, D.Y., Chiu, J.F., and Lau, A.T.Y. 2012. Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach. J. Proteome Res. 11, 2625–2634.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, A., Mizukami, Y., and Sakurai, H. 2005. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J. Biol. Chem. 280, 11911–11919.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, A. and Sakurai, H. 2006. The DNA-binding domain of yeast Hsf1 regulates both DNA-binding and transcriptional activities. Biochem. Biophys. Res. Commun. 346, 1324–1329.

    Article  CAS  PubMed  Google Scholar 

  • Yang, D.H., Jung, K.W., Bang, S., Lee, J.W., Song, M.H., Floyd-Averette, A., Festa, R.A., Ianiri, G., Idnurm, A., Thiele, D.J., et al. 2017. Rewiring of signaling networks modulating thermotolerance in the human pathogen Cryptococcus neoformans. Genetics 205, 201–219.

    Article  CAS  PubMed  Google Scholar 

  • Yeon, J.Y., Yoo, S.J., Takagi, H., and Kang, H.A. 2018. A novel mitochondrial serine O-acetyltransferase, OpSAT1, plays a critical role in sulfur metabolism in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Sci. Rep. 8, 2377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo, S.J., Sohn, M.J., Jeong, D.M., and Kang, H.A. 2020. Short bZIP homologue of sulfur regulator Met4 from Ogataea parapolymorpha does not depend on DNA-binding cofactors for activating genes in sulfur starvation. Environ. Microbiol. 22, 310–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea, Grant No. NRF-2017M3C1B5019295 (STEAM Research Project), and Grant No. NRF2018R1A5A1025077 (Advanced Research Center Program). This research was also supported by the Chung-Ang University Graduate Research Scholarship in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ah Kang.

Additional information

Conflict of Interest

We have no conflicts of interest to report.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, J.H., Lee, SB., Moon, H.Y. et al. Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. J Microbiol. 59, 151–163 (2021). https://doi.org/10.1007/s12275-021-0646-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0646-2

Keywords

Navigation