Skip to main content

Advertisement

Log in

Effects of digested Cheonggukjang on human microbiota assessed by in vitro fecal fermentation

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In vitro fecal fermentation is an assay that uses fecal microbes to ferment foods, the results of which can be used to evaluate the potential of prebiotic candidates. To date, there have been various protocols used for in vitro fecal fermentation-based assessments of food substances. In this study, we investigated how personal gut microbiota differences and external factors affect the results of in vitro fecal fermentation assays. We used Cheonggukjang (CGJ), a Korean traditional fermented soybean soup that is acknowledged as healthy functional diet. CGJ was digested in vitro using acids and enzymes, and then fermented with human feces anaerobically. After fecal fermentation, the microbiota was analyzed using MiSeq, and the amount of short chain fatty acids (SCFAs) were measured using GC-MS. Our results suggest that CGJ was effectively metabolized by fecal bacteria to produce SCFAs, and this process resulted in an increase in the abundance of Coprococcus, Ruminococcus, and Bifidobacterium and a reduction in the growth of Sutterella, an opportunistic pathogen. The metabolic activities predicted from the microbiota shifts indicated enhanced metabolism linked to methionine biosynthesis and depleted chondroitin sulfate degradation. Moreover, the amount of SCFAs and microbiota shifts varied depending on personal microbiota differences. Our findings also suggest that in vitro fecal fermentation of CGJ for longer durations may partially affect certain fecal microbes. Overall, the study discusses the usability of in vitro gastrointestinal digestion and fecal fermentation (GIDFF) to imitate the effects of diet-induced microbiome modulation and its impact on the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alegría, A., Garcia-Llatas, G., and Cilla, A. 2015. Static Digestion Models: General Introduction. In Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., and Wichers, H. (eds.), The impact of food bioactives on health: in vitro and ex vivo models. pp. 3–12. Springer, Cham, Switzerland.

    Google Scholar 

  • Arcila, J.A. and Rose, D.J. 2015. Repeated cooking and freezing of whole wheat flour increases resistant starch with beneficial impacts on in vitro fecal fermentation properties. J. Funct. Foods 12, 230–236.

    Article  CAS  Google Scholar 

  • Astbury, S., Atallah, E., Vijay, A., Aithal, G.P., Grove, J.I., and Valdes, A.M. 2020. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 11, 569–580.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, N.T., Schmidt, A.W., Venkataraman, A., Kim, K.S., Waldron, C., and Schmidt, T.M. 2019. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 10, e02566–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., Golding, M., Le Feunteun, S., Macierzanka, A., Menard, O., et al. 2018. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 58, 2239–2261.

    Article  CAS  PubMed  Google Scholar 

  • Brahma, S., Martínez, I., Walter, J., Clarke, J., Gonzalez, T., Menon, R., and Rose, D.J. 2017. Impact of dietary pattern of the fecal donor on in vitro fermentation properties of whole grains and brans. J. Funct. Foods 29, 281–289.

    Article  CAS  Google Scholar 

  • Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14, 991–1014.

    Article  CAS  PubMed  Google Scholar 

  • Canfora, E.E., Meex, R.C.R., Venema, K., and Blaak, E.E. 2019. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Xu, W., Chen, D., Chen, G., Liu, J., Zeng, X., Shao, R., and Zhu, H. 2018. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. Int. J. Biol. Macromol. 112, 1055–1061.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Zheng, H., Zhang, G., Chen, F., Chen, L., and Yang, Z. 2020. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 10, 9364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., and Tiedje, J.M. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642.

    Article  CAS  PubMed  Google Scholar 

  • Costea, P.I., Hildebrand, F., Arumugam, M., Bäckhed, F., Blaser, M.J., Bushman, F.D., de Vos, W.M., Ehrlich, S.D., Fraser, C.M., Hattori, M., et al. 2018. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Cresci, G.A. and Bawden, E. 2015. Gut microbiome: what we do and don’t know. Nutr. Clin. Pract. 30, 734–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Asta, M., Calani, L., Tedeschi, M., Jechiu, L., Brighenti, F., and Del Rio, D. 2012. Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Nutrition 28, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Y., Yan, Y., Peng, Y., Chen, D., Mi, J., Lu, L., Luo, Q., Li, X., Zeng, X., and Cao, Y. 2019. In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum. Int. J. Biol. Macromol. 125, 751–760.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, S.H., Louis, P., Thomson, J.M., and Flint, H.J. 2009. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11, 2112–2122.

    Article  PubMed  Google Scholar 

  • El Sohaimy, S.A. 2012. Functional foods and nutraceuticals-modern approach to food science. World Appl. Sci. J. 20, 691–708.

    CAS  Google Scholar 

  • Faith, D.P., Minchin, P.R., and Belbin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68.

    Article  Google Scholar 

  • Fernandes, A.D., Reid, J.N.S., Macklaim, J.M., McMurrough, T.A., Edgell, D.R., and Gloor, G.B. 2014. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, X., Cao, C., Ren, B., Zhang, B., Huang, Q., and Li, C. 2018. Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota. Carbohydr. Polym. 183, 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi, A., Totino, V., Cacciotti, F., Iebba, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C., Pantanella, F., and Schippa, S. 2018. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health 15, 1679.

    Article  PubMed Central  CAS  Google Scholar 

  • Gao, J., Lin, L., Chen, Z., Cai, Y., Xiao, C., Zhou, F., Sun, B., and Zhao, M. 2019. In vitro digestion and fermentation of three polysaccharide fractions from Laminaria japonica and their impact on lipid metabolism-associated human gut microbiota. J. Agric. Food Chem. 67, 7496–7505.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Arango, L.F., Barrett, H.L., Wilkinson, S.A., Callaway, L.K., McIntyre, H.D., Morrison, M., and Dekker Nitert, M. 2018. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonçalves, G.A., Corrêa, R.C.G., Barros, L., Dias, M.I., Calhelha, R.C., Correa, V.G., Bracht, A., Peralta, R.M., and Ferreira, I.C.F.R. 2019. Effects of in vitro gastrointestinal digestion and colonic fermentation on a rosemary (Rosmarinus officinalis L) extract rich in rosmarinic acid. Food Chem. 271, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, A.L., Kallstrom, G., Faith, J.J., Reyes, A., Moore, A., Dantas, G., and Gordon, J.I. 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. USA 108, 6252–6257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, S.B., Zhao, L.N., Wu, Y., Li, S.C., Sun, J.R., Huang, J.F., and Li, D.D. 2015. Potential probiotic attributes of a new strain of Bacillus coagulans CGMCC 9951 isolated from healthy piglet feces. World J. Microbiol. Biotechnol. 31, 851–863.

    Article  CAS  PubMed  Google Scholar 

  • Hasler, C.M. 2002. Functional foods: benefits, concerns and challenges-a position paper from the American Council on Science and Health. J. Nutr. 132, 3772–3781.

    Article  CAS  PubMed  Google Scholar 

  • Heintz-Buschart, A. and Wilmes, P. 2018. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Hur, S.J., Lim, B.O., Decker, E.A., and McClements, D.J. 2011. In vitro human digestion models for food applications. Food Chem. 125, 1–12.

    Article  CAS  Google Scholar 

  • Kaakoush, N.O. 2020. Sutterella species, IgA-degrading bacteria in ulcerative colitis. Trends Microbiol. 28, 519–522.

    Article  CAS  PubMed  Google Scholar 

  • Kong, Q., Dong, S., Gao, J., and Jiang, C. 2016. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. Int. J. Biol. Macromol. 91, 867–871.

    Article  CAS  PubMed  Google Scholar 

  • Laursen, M.F., Laursen, R.P., Larnkjær, A., Mølgaard, C., Michaelsen, K.F., Frokiær, H., Bahl, M.I., and Licht, T.R. 2017. Faecalibacterium gut colonization is accelerated by presence of older siblings. mSphere 2, e00448–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, C.H., Ko, B.M., Song, G.S., Jun, H.I., and Kim, Y.S. 2009. Morphological characteristics of intestine in rats fed acidified small black soybean. Food Sci. Biotechnol. 18, 213–217.

    CAS  Google Scholar 

  • Lee, J.H., Paek, S.H., Shin, H.W., Lee, S.Y., Moon, B.S., Park, J.E., Lim, G.D., Kim, C.Y., and Heo, Y. 2017. Effect of fermented soybean products intake on the overall immune safety and function in mice. J. Vet. Sci. 18, 25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, S.J., Rim, H.K., Jung, J.Y., An, H.J., Shin, J.S., Cho, C.W., Rhee, Y.K., Hong, H.D., and Lee, K.T. 2013. Immunostimulatory activity of polysaccharides from Cheonggukjang. Food Chem. Toxicol. 59, 476–484.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Ma, J., Yin, Z., and Wu, H. 2019. Characteristic analysis of peptide fraction extracted from Dendrobium aphyllum after in vitro gastrointestinal digestion and fermentation by human fecal microbiota. Int. J. Pept. Res. Ther. 25, 573–582.

    Article  CAS  Google Scholar 

  • Liu, D., Wang, S., Xu, B., Guo, Y., Zhao, J., Liu, W., Sun, Z., Shao, C., Wei, X., Jiang, Z., et al. 2011. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose. Proteomics 11, 2628–2638.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Feng, Y., Jing, F., Han, Y., Lyu, N., Liu, F., Li, J., Song, X., Xie, J., Qiu, Z., et al. 2018. Association between gut microbiota and CD4 recovery in HIV-1 infected patients. Front. Microbiol. 9, 1451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luu, M., Weigand, K., Wedi, F., Breidenbend, C., Leister, H., Pautz, S., Adhikary, T., and Visekruna, A. 2018. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D., Valdivié, M., Hu, C.A.A., Ren, W., and Yin, Y. 2017. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 49, 2091–2098.

    Article  PubMed  CAS  Google Scholar 

  • Mendonça, L.A.B.M., dos Santos Ferreira, R., de Cássia Avellaneda Guimarães, R., de Castro, A.P., Franco, O.L., Matias, R., and Carvalho, C.M.E. 2018. The complex puzzle of interactions among functional food, gut microbiota, and colorectal cancer. Front. Oncol. 8, 325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Messina, M.J. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70, 439S–450S.

    Article  CAS  PubMed  Google Scholar 

  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., et al. 2014. A standardised static in vitro digestion method suitable for food — an international consensus. Food Funct. 5, 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  • Moon, J.S., Joo, W., Ling, L., Choi, H.S., and Han, N.S. 2016a. In vitro digestion and fermentation of sialyllactoses by infant gut microflora. J. Funct. Foods 21, 497–506.

    Article  CAS  Google Scholar 

  • Moon, J.S., Li, L., Bang, J., and Han, N.S. 2016b. Application of in vitro gut fermentation models to food components: A review. Food Sci. Biotechnol. 25, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulet-Cabero, A.I., Egger, L., Portmann, R., Ménard, O., Marze, S., Minekus, M., Le Feunteun, S., Sarkar, A., Grundy, M.M.L., Carrière, F., et al. 2020. A standardised semi-dynamic in vitro digestion method suitable for food — an international consensus. Food Funct. 11, 1702–1720.

    Article  PubMed  Google Scholar 

  • Nissen, L., Casciano, F., and Gianotti, A. 2020. Intestinal fermentation in vitro models to study food-induced gut microbiota shift: an updated review. FEMS Microbiol. Lett. 367, fnaa097.

    Article  CAS  PubMed  Google Scholar 

  • Noh, H., Jang, H.H., Kim, G., Zouiouich, S., Cho, S.Y., Kim, H.J., Kim, J., Choe, J.S., Gunter, M.J., Ferrari, P., et al. 2020. Taxonomic composition and diversity of the gut microbiota in relation to habitual diet in Korean adults. ResearchSquare. doi: https://doi.org/10.21203/rs.2.22869/v1.

  • Pérez-Burillo, S., Mehta, T., Esteban-Muñoz, A., Pastoriza, S., Paliy, O., and Rufián-Henares, J.Á. 2019. Effect of in vitro digestionfermentation on green and roasted coffee bioactivity: The role of the gut microbiota. Food Chem. 279, 252–259.

    Article  PubMed  CAS  Google Scholar 

  • Piewngam, P., Zheng, Y., Nguyen, T.H., Dickey, S.W., Joo, H.S., Villaruz, A.E., Glose, K.A., Fisher, E.L., Hunt, R.L., Li, B., et al. 2018. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poeker, S.A., Geirnaert, A., Berchtold, L., Greppi, A., Krych, L., Steinert, R.E., de Wouters, T., and Lacroix, C. 2018. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci. Rep. 8, 4318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pompei, A., Cordisco, L., Raimondi, S., Amaretti, A., Pagnoni, U.M., Matteuzzi, D., and Rossi, M. 2008. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe 14, 280–286.

    Article  PubMed  CAS  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596.

    Article  CAS  PubMed  Google Scholar 

  • Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de los Reyes-Gavilán, C.G., and Salazar, N. 2016. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivière, A., Selak, M., Lantin, D., Leroy, F., and De Vuyst, L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberfroid, M.B. 2000. Prebiotics and probiotics: are they functional foods? Am. J. Clin. Nutr. 71, 1682S–1687S.

    Article  CAS  PubMed  Google Scholar 

  • Sanna, S., van Zuydam, N., Mahajan, A., Kurilshikov, A., Vila, A.V., Võsa, U., Mujagic, Z., Masclee, A.A.M., Jonkers, D.A.E., Oosting, M., et al. 2019. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastiá, V., Barberá, R., Farré, R., and Lagarda, M.J. 2001. Effects of legume processing on calcium, iron and zinc contents and dialysabilities. J. Sci. Food Agric. 81, 1180–1185.

    Article  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Servin, A.L. 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28, 405–440.

    Article  CAS  PubMed  Google Scholar 

  • Shmagel, A., Demmer, R., Knights, D., Butler, M., Langsetmo, L., Lane, N.E., and Ensrud, K. 2019. The effects of glucosamine and chondroitin sulfate on gut microbial composition: a systematic review of evidence from animal and human studies. Nutrients 11, 294.

    Article  CAS  PubMed Central  Google Scholar 

  • Shobharani, P. and Halami, P.M. 2014. Cellular fatty acid profile and H+-ATPase activity to assess acid tolerance of Bacillus sp. for potential probiotic functional attributes. Appl. Microbiol. Biotechnol. 98, 9045–9058.

    Article  CAS  PubMed  Google Scholar 

  • Sivaprakasam, S., Prasad, P.D., and Singh, N. 2016. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 164, 144–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsigalou, C., Konstantinidis, T., Stavropoulou, E., Bezirtzoglou, E.E., and Tsakris, A. 2020. Potential elimination of human gut resistome by exploiting the benefits of functional foods. Front. Microbiol. 11, 50.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kleef, E., van Trijp, H.C.M., and Luning, P. 2005. Functional foods: health claim-food product compatibility and the impact of health claim framing on consumer evaluation. Appetite 44, 299–308.

    Article  PubMed  Google Scholar 

  • Wang, Z., Lou, H., Wang, Y., Shamir, R., Jiang, R., and Chen, T. 2018. GePMI: A statistical model for personal intestinal microbiome identification. npj Biofilms Microbiomes 4, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Quinn, P.J., and Yan, A. 2015. Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Biol. Rev. 90, 408–427.

    Article  PubMed  Google Scholar 

  • Wang, M., Wichienchot, S., He, X., Fu, X., Huang, Q., and Zhang, B. 2019a. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 88, 1–9.

    Article  CAS  Google Scholar 

  • Wang, J., Wu, P., Liu, M., Liao, Z., Wang, Y., Dong, Z., and Chen, X.D. 2019b. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice. Food Funct. 10, 2914–2925.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, X., Sankaranarayanan, K., and Khosla, C. 2017. Biosynthesis and structure-activity relationships of the lipid a family of glycolipids. Curr. Opin. Chem. Biol. 40, 127–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, B., Xie, J., Huang, J., Chen, L., Gao, L., Ou, S., Wang, Y., and Peng, X. 2016. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro. Food Funct. 7, 1501–1507.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Martínez, I., Walter, J., Keshavarzian, A., and Rose, D.J. 2013. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe 23, 74–81.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. and Rose, D.J. 2014. Long-term dietary pattern of fecal donor correlates with butyrate production and markers of protein fermentation during in vitro fecal fermentation. Nutr. Res. 34, 749–759.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agricultural Microbiome R&D Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (918021-4), Traditional Culture Convergence Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2016M3C1B5907205) and was also supported, in part, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unno Tatsuya.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Hwang, N., Ko, G. et al. Effects of digested Cheonggukjang on human microbiota assessed by in vitro fecal fermentation. J Microbiol. 59, 217–227 (2021). https://doi.org/10.1007/s12275-021-0525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0525-x

Keywords

Navigation