Skip to main content

Recent advances in genetic engineering tools based on synthetic biology

Abstract

Genome-scale engineering is a crucial methodology to rationally regulate microbiological system operations, leading to expected biological behaviors or enhanced bioproduct yields. Over the past decade, innovative genome modification technologies have been developed for effectively regulating and manipulating genes at the genome level. Here, we discuss the current genome-scale engineering technologies used for microbial engineering. Recently developed strategies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, multiplex automated genome engineering (MAGE), promoter engineering, CRISPR-based regulations, and synthetic small regulatory RNA (sRNA)-based knockdown, are considered as powerful tools for genome-scale engineering in microbiological systems. MAGE, which modifies specific nucleotides of the genome sequence, is utilized as a genome-editing tool. Contrastingly, synthetic sRNA, CRISPRi, and CRISPRa are mainly used to regulate gene expression without modifying the genome sequence. This review introduces the recent genome-scale editing and regulating technologies and their applications in metabolic engineering.

This is a preview of subscription content, access via your institution.

References

  • Abdullah, M.A., Rahmah, A.U., Sinskey, A.J., and Rha, C.K. 2008. Cell engineering and molecular pharming for biopharmaceuticals. Open Med. Chem. J.2, 49–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., et al. 2017. RNA targeting with CRISPR-Cas13. Nature550, 280–284.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Alper, H., Fischer, C., Nevoigt, E., and Stephanopoulos, G. 2005. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA102, 12678–12683.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Auerbach, C. 1949. Chemical mutagenesis. Biol. Rev. Camb. Philos. Soc.24, 355–391.

    CAS  PubMed  Article  Google Scholar 

  • Becker, J. and Wittmann, C. 2015. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew. Chem. Int. Ed. Engl.54, 3328–3350.

    CAS  PubMed  Article  Google Scholar 

  • Beer, M.A. and Tavazoie, S. 2004. Predicting gene expression from sequence. Cell117, 185–198.

    CAS  PubMed  Article  Google Scholar 

  • Bharanikumar, R., Premkumar, K.A.R., and Palaniappan, A. 2018. Promoterpredict: sequence-based modelling of Escherichia coli σ 70 promoter strength yields logarithmic dependence between promoter strength and sequence. PeerJ6, e5862.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Bhat, A.P., Shin, M., and Choy, H.E. 2014. Identification of high-specificity H-NS binding site in LEE5 promoter of enteropathogenic Esherichia coli (EPEC). J. Microbiol.52, 626–629.

    CAS  PubMed  Article  Google Scholar 

  • Blazeck, J. and Alper, H.S. 2013. Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol. J.8, 46–58.

    CAS  PubMed  Article  Google Scholar 

  • Bonde, M.T., Pedersen, M., Klausen, M.S., Jensen, S.I., Wulff, T., Harrison, S., Nielsen, A.T., Herrgård, M.J., and Sommer, M.O. 2016. Predictable tuning of protein expression in bacteria. Nat. Methods13, 233–236.

    CAS  PubMed  Article  Google Scholar 

  • Bouloc, P. and Repoila, F. 2016. Fresh layers of RNA-mediated regulation in Gram-positive bacteria. Curr. Opin. Microbiol.30, 30–35.

    CAS  PubMed  Article  Google Scholar 

  • Budden, D.M., Hurley, D.G., and Crampin, E.J. 2015. Predictive modelling of gene expression from transcriptional regulatory elements. Brief. Bioinform.16, 616–628.

    CAS  PubMed  Article  Google Scholar 

  • Chae, T.U., Kim, W.J., Choi, S., Park, S.J., and Lee, S.Y. 2015. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci. Rep.5, 13040.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Clark, A.J. and Sandler, S.J. 1994. Homologous genetic recombination: the pieces begin to fall into place. Crit. Rev. Microbiol.20, 125–142.

    CAS  PubMed  Article  Google Scholar 

  • Coppins, R.L., Hall, K.B., and Groisman, E.A. 2007. The intricate world of riboswitches. Curr. Opin. Microbiol.10, 176–181.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Datsenko, K.A. and Wanner, B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA97, 6640–6645.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • De Lay, N.R. and Garsin, D.A. 2016. The unmasking of ‘junk’ RNA reveals novel sRNAs: from processed RNA fragments to marooned riboswitches. Curr. Opin. Microbiol.30, 16–21.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • De Mey, M., Maertens, J., Boogmans, S., Soetaert, W.K., Vandamme, E.J., Cunin, R., and Foulquie-Moreno, M.R. 2010. Promoter knock in: a novel rational method for the fine tuning of genes. BMC Biotechnol.10, 26.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • de Smit, M.H. and van Duin, J. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. USA87, 7668–7672.

    PubMed  Article  PubMed Central  Google Scholar 

  • Deng, Z., Meng, X., Su, S., Liu, Z., Ji, X., Zhang, Y., Zhao, X., Wang, X., Yang, R., and Han, Y. 2012. Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability. Res. Microbiol.163, 413–418.

    CAS  PubMed  Article  Google Scholar 

  • Dong, C., Fontana, J., Patel, A., Carothers, J.M., and Zalatan, J.G. 2018. Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat. Commun.9, 2489.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Du, L.H., Zhang, Z., Xu, Q.Y., and Chen, N. 2019. Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered10, 59–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Ellis, H.M., Yu, D., DiTizio, T., and Court, D.L. 2001. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA98, 6742–6746.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Engstrom, M.D. and Pfleger, B.F. 2017. Transcription control engineering and applications in synthetic biology. Synth. Syst. Biotechnol.2, 176–191.

    PubMed  PubMed Central  Article  Google Scholar 

  • Felden, B., Vandenesch, F., Bouloc, P., and Romby, P. 2011. The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog.7, e1002006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fernández-Cañón, J.M. and Peñalva, M.A. 1995. Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol. Gen. Genet.246, 110–118.

    PubMed  Article  Google Scholar 

  • Garst, A.D., Bassalo, M.C., Pines, G., Lynch, S.A., Halweg-Edwards, A.L., Liu, R.M., Liang, L.Y., Wang, Z.W., Zeitoun, R., Alexander, W.G.,et al. 2017. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol.35, 48–55.

    CAS  PubMed  Article  Google Scholar 

  • George, K.W., Thompson, M.G., Kang, A., Baidoo, E., Wang, G., Chan, L.J.G., Adams, P.D., Petzold, C.J., Keasling, J.D., and Lee, T.S. 2015. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci. Rep.5, 11128.

    PubMed  PubMed Central  Article  Google Scholar 

  • Gottesman, S. 2004. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol.58, 303–328.

    CAS  PubMed  Article  Google Scholar 

  • Halperin, S.O., Tou, C.J., Wong, E.B., Modavi, C., Schaffer, D.V., and Dueber, J.E. 2018. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature560, 248–252.

    CAS  PubMed  Article  Google Scholar 

  • Hermann, T. 2003. Industrial production of amino acids by cory-neform bacteria. J. Biotechnol.104, 155–172.

    CAS  PubMed  Article  Google Scholar 

  • Hoynes-O’Connor, A. and Moon, T.S. 2016. Development of design rules for reliable antisense RNA behavior in E. coli. ACS Synth. Biol.5, 1441–1454.

    PubMed  Article  CAS  Google Scholar 

  • Huang, H.Y., Chang, H.Y., Chou, C.H., Tseng, C.P., Ho, S.Y., Yang, C.D., Ju, Y.W., and Huang, H.D. 2009. sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res.37, D150–154.

    CAS  PubMed  Article  Google Scholar 

  • Huang, W., Nevins, J.R., and Ohler, U. 2007. Phylogenetic simulation of promoter evolution: estimation and modeling of binding site turnover events and assessment of their impact on alignment tools. Genome Biol.8, R225.

    PubMed  PubMed Central  Article  Google Scholar 

  • Huang, T. Wan, S.B., Xu, Z.P., Zheng, Y.F., Feng, K.Y., Li, H.P., Kong, X.Y., and Cai, Y.D. 2011. Analysis and prediction of translation rate based on sequence and functional features of the mRNA. PLoS One6, e16036.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hwang, H.J., Kim, J.W., Ju, S.Y., Park, J.H., and Lee, P.C. 2017. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli. Biotechnol. Bioeng.114, 468–473.

    CAS  PubMed  Article  Google Scholar 

  • Hwang, H.J., Lee, S.Y., and Lee, P.C. 2018. Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli. Biotechnol. Biofuels11, 103.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Isaacs, F.J., Carr, P.A., Wang, H.H., Lajoie, M.J., Sterling, B., Kraal, L., Tolonen, AC., Gianoulis, T.A., Goodman, D.B., Reppas, N.B.,et al. 2011. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science333, 348–353.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jaffe, S.R., Strutton, B., Pandhal, J., and Wright, P.C. 2015. Inverse metabolic engineering for enhanced glycoprotein production in Escherichia coli. Methods Mol. Biol.1321, 17–35.

    PubMed  Article  Google Scholar 

  • Jeong, J., Cho, N., Jung, D., and Bang, D. 2013. Genome-scale genetic engineering in Escherichia coli. Biotechnol. Adv.31, 804–810.

    CAS  PubMed  Article  Google Scholar 

  • Kang, Z., Wang, Y., Gu, P., Wang, Q., and Qi, Q. 2011. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab. Eng13, 492–498.

    CAS  PubMed  Article  Google Scholar 

  • Kang, Z., Wang, X., Li, Y., Wang, Q., and Qi, Q. 2012. Small RNA Ryhb as a potential tool used for metabolic engineering in Escherichia coli. Biotechnol. Lett.34, 527–531.

    CAS  PubMed  Article  Google Scholar 

  • Kang, Z., Zhang, C, Zhang, J., Jin, P., Zhang, J., Du, G., and Chen, J. 2014. Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl. Microbiol. Biotechnol.98, 3413–3424.

    CAS  PubMed  Article  Google Scholar 

  • Kim, S.C., Min, B.E., Hwang, H.G., Seo, S.W., and Jung, G.Y. 2015. Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli. Sci. Rep.5, 13853.

    PubMed  Article  Google Scholar 

  • Lalaouna, D., Carrier, M.C., Semsey, S., Brouard, J.S., Wang, J., Wade, J.T., and Masse, E. 2015. A3 external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol. Cell58, P393–405.

    Article  CAS  Google Scholar 

  • Lewis, N.E., Nagarajan, H., and Palsson, B.O. 2012. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol.10, 291–305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Li, Y.F., Lin, Z.Q., Huang, C., Zhang, Y., Wang, Z.W., Tang, Y.J., Chen, T., and Zhao, X.M. 2015. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng.31, 13–21.

    PubMed  Article  CAS  Google Scholar 

  • Lim, H.J., Kim, K., Shin, M., Jeong, J.H., Ryu, P.Y., and Choy, H.E. 2015. Effect of promoter-upstream sequence on σ38-dependent stationary phase gene transcription. J. Microbiol.53, 250–255.

    CAS  PubMed  Article  Google Scholar 

  • Lin, H., Castro, N.M., Bennett, G.N., and San, K.Y. 2006. Acetyl-coA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl. Microbiol. Biotechnol. 71, 870–874.

    CAS  PubMed  Article  Google Scholar 

  • Liu, R., Bassalo, M.C., Zeitoun, R.I., and Gill, R.T. 2015. Genome scale engineering techniques for metabolic engineering. Metab. Eng.32, 143–154.

    CAS  PubMed  Article  Google Scholar 

  • Lu, H., Villada, J.C., and Lee, P.K.H. 2019. Modular metabolic engineering for biobased chemical production. Trends Biotechnol.37, 152–166.

    CAS  PubMed  Article  Google Scholar 

  • Lv, L., Ren, Y.L., Chen, J.C., Wu, Q., and Chen, G.Q. 2015. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab. Eng.29, 160–168.

    CAS  PubMed  Article  Google Scholar 

  • Makino, T., Skretas, G., and Georgiou, G. 2011. Strain engineering for improved expression of recombinant proteins in bacteria. Microb. Cell Fact.10, 32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Małecka, E.M., Stróżecka, J., Sobańska, D., and Olejniczak, M. 2015. Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry54, 1157–1170.

    PubMed  Article  CAS  Google Scholar 

  • Malla, S., Niraula, N.P., Liou, K., and Sohng, J.K. 2009. Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J. Biosci. Bioeng.108, 92–98.

    CAS  PubMed  Article  Google Scholar 

  • Malla, S., Niraula, N.P., Liou, K., and Sohng, J.K. 2010. Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol. Res.165, 259–267.

    CAS  PubMed  Article  Google Scholar 

  • Matsoukas, I.G. 2018. Commentary: RNA editing with CRISPR-Cas13. Front. Genet.9, 134.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Matsumoto, T., Tanaka, T., and Kondo, A. 2017. Engineering metabolic pathways in Escherichia coli for constructing a “microbial chassis” for biochemical production. Bioresour. Technol.245, 1362–1368.

    CAS  PubMed  Article  Google Scholar 

  • Muller, H.J. 1927. Artificial transmutation of the gene. Science66, 84–87.

    CAS  PubMed  Article  Google Scholar 

  • Na, D. and Lee, D. 2010. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics26, 2633–2634.

    CAS  PubMed  Article  Google Scholar 

  • Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H., and Lee, S.Y. 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol.31, 170–174.

    CAS  PubMed  Article  Google Scholar 

  • Negrete, A., Majdalani, N., Phue, J.N., and Shiloach, J. 2013. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. N. Biotechnol.30, 269–273.

    CAS  PubMed  Google Scholar 

  • Nielsen, J. and Keasling, J.D. 2016. Engineering cellular metabolism. Cell164, 1185–1197.

    CAS  PubMed  Article  Google Scholar 

  • Omotajo, D., Tate, T., Cho, H., and Choudhary, M. 2015. Distribution and diversity of ribosome binding sites in prokaryotic genomes. BMC Genomics16, 604.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Oude Blenke, E., Evers, M.J., Mastrobattista, E., and van der Oost, J. 2016. CRISPR-Cas9 gene editing: delivery aspects and therapeutic potential. J. Control. Release244, 139–148.

    PubMed  Article  CAS  Google Scholar 

  • Qian, Z.G., Xia, X.X., and Lee, S.Y. 2011. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng.108, 93–103.

    CAS  PubMed  Article  Google Scholar 

  • Quandt, E.M., Deatherage, D.E., Ellington, A.D., Georgiou, G., and Barrick, J.E. 2014. Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli. Proc. Natl. Acad. Sci. USA111, 2217–2222.

    CAS  PubMed  Article  Google Scholar 

  • Raghavan, R., Groisman, E.A., and Ochman, H. 2011. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res.21, 1487–1497.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Reeve, B., Hargest, T., Gilbert, C., and Ellis, T. 2014. Predicting translation initiation rates for designing synthetic biology. Front. Bioeng. Biotechnol.2, 1.

    PubMed  PubMed Central  Article  Google Scholar 

  • Rhodius, V.A., Mutalik, V.K., and Gross, C.A. 2012. Predicting the strength of up-elements and full-length E. coli promoters. Nucleic Acids Res.40, 2907–2924.

    CAS  PubMed  Article  Google Scholar 

  • Ronda, C., Pedersen, L.E., Sommer, M.O., and Nielsen, A.T. 2016. CRMAGE: CRISPR optimized mage recombineering. Sci. Rep.6, 19452.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sakai, Y., Abe, K., Nakashima, S., Yoshida, W., Ferri, S., Sode, K., and Ikebukuro, K. 2014. Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth. Biol.3, 152–162.

    CAS  PubMed  Article  Google Scholar 

  • Salis, H.M. 2011. The ribosome binding site calculator. Methods Enzymol.498, 19–42.

    CAS  PubMed  Article  Google Scholar 

  • Schu, D.J., Zhang, A., Gottesman, S., and Storz, G. 2015. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J.34, 2557–2573.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Seo, S.W., Yang, J.S., Kim, I., Yang, J., Min, B.E., Kim, S., and Jung, G.Y. 2013. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng15, 67–74.

    CAS  PubMed  Article  Google Scholar 

  • Shen, R., Yin, J., Ye, J.W., Xiang, R.J., Ning, Z.Y., Huang, W.Z., and Chen, G.Q. 2018. Promoter engineering for enhanced P(3HB-co-4HB) production by Halomonas bluephagenesis. ACS Synth. Biol.7, 1897–1906.

    CAS  PubMed  Article  Google Scholar 

  • Simon, A.J., d’Oelsnitz, S., and Ellington, A. 2019. Synthetic evolution. Nat. Biotechnol.37, 730–743.

    CAS  PubMed  Article  Google Scholar 

  • Smirnov, A., Forstner, K.U., Holmqvist, E., Otto, A., Gunster, R., Becher, D., Reinhardt, R., and Vogel, J. 2016. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc. Natl. Acad. Sci. USA113, 11591–11596.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Sterk, M., Romilly, C., and Wagner, E.G.H. 2018. Unstructured 5-tails act through ribosome standby to override inhibitory structure at ribosome binding sites. Nucleic Acids Res.46, 4188–4199.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Vervoort, Y., Linares, A.G., Roncoroni, M., Liu, C., Steensels, J., and Verstrepen, K.J. 2017. High-throughput system-wide engineering and screening for microbial biotechnology. Curr. Opin. Biotechnol.46, 120–125.

    CAS  PubMed  Article  Google Scholar 

  • Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., and Gelfand, M.S. 2004. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet.20, 44–50.

    CAS  PubMed  Article  Google Scholar 

  • Vogel, J. 2009. A rough guide to the non-coding RNA world of Salmonella. Mol. Microbiol.71, 1–11.

    CAS  PubMed  Article  Google Scholar 

  • Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., and Church, G.M. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature460, 894–898.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang, H.H., Kim, H., Cong, L., Jeong, J., Bang, D., and Church, G.M. 2012. Genome-scale promoter engineering by coselection MAGE. Nat. Methods9, 591–593.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Wang, H., La Russa, M., and Qi, L.S. 2016. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem.85, 227–264.

    CAS  PubMed  Article  Google Scholar 

  • Warner, J.R., Reeder, P.J., Karimpour-Fard, A., Woodruff, L.B., and Gill, R.T. 2010. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat. Biotechnol.28, 856–862.

    CAS  PubMed  Article  Google Scholar 

  • Weber, T., Charusanti, P., Musiol-Kroll, E.M., Jiang, X., Tong, Y., Kim, H.U., and Lee, S.Y. 2015. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actino-mycetes. Trends Biotechnol.33, 15–26.

    CAS  PubMed  Article  Google Scholar 

  • Weller, K. and Recknagel, R.D. 1994. Promoter strength prediction based on occurrence frequencies of consensus patterns. J. Theor. Biol.171, 355–359.

    CAS  PubMed  Article  Google Scholar 

  • Xiao, X., Xu, Z.C., Qiu, W.R., Wang, P., Ge, H.T., and Chou, K.C. 2019. iPSW(2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics111, 1785–1793.

    CAS  PubMed  Article  Google Scholar 

  • Xue, C., Zhao, J., Chen, L., Yang, S.T., and Bai, F. 2017. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol. Adv.35, 310–322.

    CAS  PubMed  Article  Google Scholar 

  • Yan, Q. and Fong, S.S. 2017. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J. Biol. Eng.11, 33.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Zhang, J., Cai, Y., Du, G., Chen, J., Wang, M., and Kang, Z. 2017. Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae. J. Microbiol.55, 538–544.

    CAS  PubMed  Article  Google Scholar 

  • Zhang, Y.X., Perry, K., Vinci, V.A., Powell, K., Stemmer, W.P., and del Cardayre, S.B. 2002. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature415, 644–646.

    CAS  PubMed  Article  Google Scholar 

  • Zhou, S., Du, G., Kang, Z., Li, J., Chen, J., Li, H., and Zhou, J. 2017. The application of powerful promoters to enhance gene expression in industrial microorganisms. World J. Microbiol. Biotechnol.33, 23.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A5A1025077). This research was also supported by Chung-Ang University Research Scholarship Grants in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dokyun Na.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Lee, J. & Na, D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol. 58, 1–10 (2020). https://doi.org/10.1007/s12275-020-9334-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9334-x

Keywords

  • CRISPR
  • MAGE
  • promoter engineering
  • CRISPRi
  • CRISPRa
  • synthetic sRNA
  • metabolic engineering
  • genome-scale engineering