Skip to main content
Log in

Soil water content as a critical factor for stable bacterial community structure and degradative activity in maritime Antarctic soil

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Recent increases in air temperature across the Antarctic Peninsula may prolong the thawing period and directly affect the soil temperature (Ts) and volumetric soil water content (SWC) in maritime tundra. Under an 8°C soil warming scenario, two customized microcosm systems with maritime Antarctic soils were incubated to investigate the differential influence of SWC on the bacterial community and degradation activity of humic substances (HS), the largest constituent of soil organic carbon and a key component of the terrestrial ecosystem. When the microcosm soil (KS1-4Feb) was incubated for 90 days (T = 90) at a constant SWC of ~32%, the initial HS content (167.0 mg/g of dried soil) decreased to 156.0 mg (approximately 6.6% loss, p < 0.05). However, when another microcosm soil (KS1-4Apr) was incubated with SWCs that gradually decreased from 37% to 9% for T = 90, HS degradation was undetected. The low HS degradative activity persisted, even after the SWC was restored to 30% with water supply for an additional T = 30. Overall bacterial community structure remained relatively stable at a constant SWC setting (KS1-4Feb). In contrast, we saw marked shifts in the bacterial community structure with the changing SWC regimen (KS1-4Apr), suggesting that the soil bacterial communities are vulnerable to drying and re-wetting conditions. These microcosm experiments provide new information regarding the effects of constant SWC and higher Ts on bacterial communities for HS degradation in maritime Antarctic tundra soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badis, A., Ferradji, F.Z., Boucherit, A., Fodil, D., and Boutoumi, H. 2009. Characterization and biodegradation of soil humic acids and preliminary identification of decolorizing actinomycetes at Mitidja plain soils (Algeria). Afr. J. Microbiol. Res. 3, 997–1007.

    CAS  Google Scholar 

  • Brabcová, V., Nováková, M., Davidová, A., and Baldrian, P. 2016. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 210, 1369–1381.

    Article  PubMed  Google Scholar 

  • Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., and Holmes, S.P. 2016. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, E.A. and Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J. 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierer, N., Craine, J.M., McLauchlan, K., and Schimel, J.P. 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86, 320–326.

    Article  Google Scholar 

  • Frostegård, A. and Bååth, E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65.

    Article  Google Scholar 

  • Glanville, H.C., Hill, P.W., Maccarone, L.D., Golyshin, P.N., Murphy, D.V., and Jones, D.L. 2012. Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem. Funct. Ecol. 26, 1366–1380.

    Article  Google Scholar 

  • Han, J., Jung, J., Park, M., Hyun, S., and Park, W. 2013. Short-term effect of elevated temperature on the abundance and diversity of bacterial and archaeal amoA genes in Antarctic soils. J. Microbiol. Biotechnol. 23, 1187–1196.

    Article  CAS  PubMed  Google Scholar 

  • Horrocks, C.A., Newsham, K.K., Cox, F., Garnett, M.H., Robinson, C.H., and Dungait, J.A.J. 2020. Predicting climate change impacts on maritime Antarctic soils: A space-for-time substitution study. Soil Biol. Biochem. 141, 107682.

    Article  CAS  Google Scholar 

  • Kim, D., Park, H.J., Kim, J.H., Youn, U.J., Yang, Y.H., Casanova-Katny, A., Vargas, C.M., Venegas, E.Z., Park, H., and Hong, S.G. 2018. Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. J. Basic Microbiol. 58, 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., Park, H.J., Nam, S., Kim, S.C., and Lee, H. 2019. Humic substances degradation by a microbial consortium enriched from subarctic tundra soil. Korean J. Microbiol. 55, 367–376.

    Google Scholar 

  • Kowalewski, D.E., Marchant, D.R., Levy, J.S., and Head, J.W. 2006. Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica. Antarct. Sci. 18, 421–428.

    Article  Google Scholar 

  • Lehmann, J. and Kleber, M. 2015. The contentious nature of soil organic matter. Nature 528, 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Lipczynska-Kochany, E. 2018. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 202, 420–437.

    Article  CAS  PubMed  Google Scholar 

  • Lupatini, M., Suleiman, A.K.A., Jacques, R.J.S., Lemos, L.N., Pylro, V.S., Van Veen, J.A., Kuramae, E.E., and Roesch, L.F.W. 2019. Moisture is more important than temperature for assembly of both potentially active and whole prokaryotic communities in subtropical grassland. Microb. Ecol. 77, 460–470.

    Article  PubMed  Google Scholar 

  • Martin, M. 2011. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet. J. 17, 10–12.

    Article  Google Scholar 

  • Mauro, G. 2004. Observations on permafrost ground thermal regimes from Antarctica and the Italian Alps, and their relevance to global climate change. Glob. Planet. Change 40, 159–167.

    Article  Google Scholar 

  • Park, H.J., Chae, N., Sul, W.J., Lee, B.Y., Lee, Y.K., and Kim, D. 2015. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil. Microb. Ecol. 69, 668–675.

    Article  CAS  PubMed  Google Scholar 

  • Quideau, S.A., McIntosh, A.C., Norris, C.E., Lloret, E., Swallow, M.J., and Hannam, K. 2016. Extraction and analysis of microbial phospholipid fatty acids in soils. J. Vis. Exp. 114, 54360.

    Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seybold, C.A., Balks, M.R., and Harms, D.S. 2010. Characterization of active layer water contents in the McMurdo Sound region, Antarctica. Antarct. Sci. 22, 633–645.

    Article  Google Scholar 

  • Stres, B., Danevcic, T., Pal, L., Fuka, M.M., Resman, L., Leskovec, S., Hacin, J., Stopar, D., Mahne, I., and Mandic-Mulec, I. 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66, 110–122.

    Article  CAS  PubMed  Google Scholar 

  • Supramaniam, Y., Chong, C.W., Silvaraj, S., and Tan, I.K.P. 2016. Effect of short term variation in temperature and water content on the bacterial community in a tropical soil. Appl. Soil Ecol. 107, 279–289.

    Article  Google Scholar 

  • Wlostowski, A.N., Gooseff, M.N., and Adams, B.J. 2018. Soil moisture controls the thermal habitat of active layer soils in the Mc-Murdo Dry Valleys, Antarctica. J. Geophys. Res. Biogeosci. 123, 46–59.

    Article  Google Scholar 

  • Yadav, B.K. and Hassanizadeh, S.M. 2011. An overview of biodegradation of LNAPLs in coastal (semi)-arid environment. Water Air Soil Pollut. 220, 225–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (PE20170) funded by the Korea Polar Research Institute and a National Research Foundation of Korea grant funded by the Korean government (MSIP) (NRF-2018R1D1A1B07047778 and NRF-2016-M1A5A1901790). We thank Mr. Minsuk Park, Dr. Young Jun Yoon, and Ms. Sujeong Jeong for designing the microcosm system, for collecting the soil samples at the King Sejong Station in 2016, and for characterizing the physical and chemical properties of the soil samples, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dockyu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Chae, N., Kim, M. et al. Soil water content as a critical factor for stable bacterial community structure and degradative activity in maritime Antarctic soil. J Microbiol. 58, 1010–1017 (2020). https://doi.org/10.1007/s12275-020-0490-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0490-9

Keywords

Navigation