Skip to main content
Log in

Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Chitin is the most abundant biopolymer in marine environments. To facilitate its utilization, our laboratory screened marine-derived fungal strains for chitinolytic activity. One chitinolytic strain isolated from seawater, designated YS2-2, was identified as Acremonium species based on morphological and phylogenetic analyses. Acremonium species are cosmopolitan fungi commonly isolated from both terrestrial and marine environments, but their chitinolytic activity is largely unknown. The extracellular crude enzyme of YS2-2 exhibited optimum chitinolytic activity at pH 6.0–7.6, 23–45°C, and 1.5% (w/v) NaCl. Degenerate PCR revealed the partial cDNA sequence of a putative chitinase gene, chiA, in YS2-2. The expression of chiA was dramatically induced in response to 1% (w/v) colloidal chitin compared to levels under starvation, chitin powder, and glucose conditions. Moreover, the chiA transcript levels were positively correlated with chitinolytic activities under various colloidal chitin concentrations, suggesting that ChiA mediates chitinolytic activity in this strain. Our results provide a basis for additional studies of marinederived chitinolytic fungi aimed at improving industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aluwihare, L.I., Repeta, D.J., Pantoja, S., and Johnson, C.G. 2005. Two chemically distinct pools of organic nitrogen accumulate in the ocean. Science 308, 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  • Balabanova, L., Slepchenko, L., Son, O., and Tekutyeva, L. 2018. Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front. Microbiol. 9, 1527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benhabiles, M., Salah, R., Lounici, H., Drouiche, N., Goosen, M., and Mameri, N. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29, 48–56.

    Article  CAS  Google Scholar 

  • Bird, A.F. and Self, P.G. 1995. Chitin in Meloidogyne javanica. Fundam. Appl. Nematol. 18, 235–239.

    Google Scholar 

  • Bonugli-Santos, R.C., Dos Santos Vasconcelos, M.R., Passarini, M.R., Vieira, G.A., Lopes, V.C., Mainardi, P.H., Dos Santos, J.A., de Azevedo Duarte, L., Otero, I.V., da Silva Yoshida, et al. 2015. Marine-derived fungi: diversity of enzymes and biotechnological applications. Front. Microbiol. 6, 269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman, S.M. and Free, S.J. 2006. The structure and synthesis of the fungal cell wall. Bioessays 28, 799–808.

    Article  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chae, S.K. and Kafer, E. 1997. Two uvs genes of Aspergillus nidulans with different functions in error-prone repair: uvsI, active in mutation-specific reversion, and uvsC, a recA homolog, required for all UV mutagenesis. Mol. Gen. Genet. 254, 643–653.

    Article  CAS  PubMed  Google Scholar 

  • Choi, G.J., Kim, J.C., Jang, K.S., Nam, M.H., Lee, S.W., and Kim, H.T. 2009. Biocontrol activity of Acremonium strictum BCP against Botrytis diseases. Plant Pathol. J. 25, 165–171.

    Article  Google Scholar 

  • Das, S., Saha, R., Dar, S.A., and Ramachandran, V.G. 2010. Acremonium species: a review of the etiological agents of emerging hyalohyphomycosis. Mycopathologia 170, 361–375.

    Article  PubMed  Google Scholar 

  • Farag, A., Abd-Elnabey, H., Ibrahim, H., and El-Shenawy, M. 2016. Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. Egypt. J. Aquat. Res. 42, 185–192.

    Article  Google Scholar 

  • Ferrari, A.R., Gaber, Y., and Fraaije, M.W. 2014. A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnol. Biofuels 7, 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gan, Z., Yang, J., Tao, N., Yu, Z., and Zhang, K.Q. 2007. Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J. Microbiol. 45, 422–430.

    CAS  PubMed  Google Scholar 

  • Gardes, M. and Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Grum-Grzhimaylo, A.A., Georgieva, M.L., Debets, A.J., and Bilanenko, E.N. 2013. Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin? IMA Fungus 4, 213–228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunaratna, K.R. and Balasubramanian, R. 1994. Partial purification and properties of extracellular chitinase produced by Acremonium obclavatum, an antagonist to the groundnut rust, Puccinia arachidis. World J. Microbiol. Biotechnol. 10, 342–345.

    Article  CAS  PubMed  Google Scholar 

  • Guo, R.F., Shi, B.S., Li, D.C., Ma, W., and Wei, Q. 2008. Purification and characterization of a novel thermostable chitinase from Thermomyces lanuginosus SY2 and cloning of its encoding gene. Agric. Sci. China 7, 1458–1465.

    Article  CAS  Google Scholar 

  • Hankin, L. and Anagnostakis, S.L. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia 67, 597–607.

    Article  Google Scholar 

  • Hirano, S. 1996. Chitin biotechnology applications. Biotechnol. Annu. Rev. 2, 237–258.

    Article  CAS  PubMed  Google Scholar 

  • Hutner, S.H., Provasoli, L., Schatz, A., and Haskins, C.P. 1950. Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Am. Philos. Soc. 94, 152–170.

    CAS  Google Scholar 

  • Jeon, Y.J., Shahidi, F., and Kim, S.K. 2000. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev. Int. 16, 159–176.

    Article  CAS  Google Scholar 

  • Kamat, T., Rodriguees, C., and Naik, C.G. 2008. Marine-derived fungi as a source of proteases. Indian J. Marine Sci. 37, 326–328.

    CAS  Google Scholar 

  • Kang, Y., Kim, H., and Choi, H.T. 2013. Biochemical characterization of chitinase 2 expressed during the autolytic phase of the inky cap, Coprinellus congregatus. J. Microbiol. 51, 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Khor, E. and Lim, L.Y. 2003. Implantable applications of chitin and chitosan. Biomaterials 24, 2339–2349.

    Article  CAS  PubMed  Google Scholar 

  • Klemsdal, S.S., Clarke, J.L., Hoell, I.A., Eijsink, V.G., and Brurberg, M.B. 2006. Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol. Lett. 256, 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Krishnaveni, B. and Ragunathan, R. 2014. Chitinase production from marine wastes by Aspergillus terreus and its application in degradation studies. Int. J. Curr. Microbiol. Appl. Sci. 3, 76–82.

    CAS  Google Scholar 

  • Langner, T. and Gohre, V. 2016. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr. Genet. 62, 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.G., Chung, K.C., Wi, S.G., Lee, J.C., and Bae, H.J. 2009. Purification and properties of a chitinase from Penicillium sp. LYG 0704. Protein Expr. Purif. 65, 244–250.

    Article  CAS  PubMed  Google Scholar 

  • Loni, P.P., Patil, J.U., Phugare, S.S., and Bajekal, S.S. 2014. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J. Basic Microbiol. 54, 1080–1089.

    Article  CAS  PubMed  Google Scholar 

  • Mamarabadi, M., Jensen, B., and Lubeck, M. 2008. Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Curr. Genet. 54, 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Merzendorfer, H. and Zimoch, L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  • Park, S.W., Nguyen, T.T.T., and Lee, H.B. 2017. Characterization of two species of Acremonium (unrecorded in Korea) from soil samples: A. variecolor and A. persicinum. Mycobiology 45, 353–361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perdomo, H., Sutton, D.A., Garcia, D., Fothergill, A.W., Cano, J., Gene, J., Summerbell, R.C., Rinaldi, M.G., and Guarro, J. 2011. Spectrum of clinically relevant Acremonium species in the United States. J. Clin. Microbiol. 49, 243–256.

    Article  CAS  PubMed  Google Scholar 

  • Rathore, A.S. and Gupta, R.D. 2015. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015, 791907.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehner, S.A. and Buckley, E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97, 84–98.

    CAS  PubMed  Google Scholar 

  • Ren, A.J., Wu, L.F., Li, Y.C., Tan, Z.Y., Yao, Z.X., Xu, Q.F., and Shi, H. 2016. Screening, lignocellulose enzyme activities and gene expression analysis of saprophytic fungi for decomposing bamboo sawdust. J. Agric. Biotechnol. 24, 1664–1675.

    Google Scholar 

  • Riddell, R.W. 1950. Permanent strained mycological preparations obtained by slide culture. Mycologia 42, 265–270.

    Article  Google Scholar 

  • Rukachaisirikul, V., Rodglin, A., Sukpondma, Y., Phongpaichit, S., Buatong, J., and Sakayaroj, J. 2012. Phthalide and isocoumarin derivatives produced by an Acremonium sp. isolated from a mangrove Rhizophora apiculata. J. Nat. Prod. 75, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Seidl, V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol. Rev. 22, 36–42.

    Article  Google Scholar 

  • Sharma, V., Salwan, R., Sharma, P.N., and Kanwar, S.S. 2016. Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum. Int. J. Biol. Macromol. 92, 615–624.

    Article  CAS  PubMed  Google Scholar 

  • Souza, C.P., Almeida, B.C., Colwell, R.R., and Rivera, I.N. 2011. The importance of chitin in the marine environment. Mar. Biotechnol. (NY) 13, 823–830.

    Article  CAS  Google Scholar 

  • Steenberg, T. and Humber, R.A. 1999. Entomopathogenic potential of Verticillium and Acremonium species (Deuteromycotina: Hyphomycetes). J. Invertebr. Pathol. 73, 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, X., Yao, Y., Chen, G., Mao, Z., Wang, X., and Xie, B. 2014. Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int. J. Pest. Manag. 60, 239–245.

    Article  Google Scholar 

  • Tokoro, A., Kobayashi, M., Tatewaki, N., Suzuki, K., Okawa, Y., Mikami, T., Suzuki, S., and Suzuki, M. 1989. Protective effect of Nacetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiol. Immunol. 33, 357–367.

    Article  CAS  PubMed  Google Scholar 

  • Tsukada, K., Matsumoto, T., Aizawa, K., Tokoro, A., Naruse, R., Suzuki, S., and Suzuki, M. 1990. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Jpn. J. Cancer Res. 81, 259–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzelepis, G.D., Melin, P., Jensen, D.F., Stenlid, J., and Karlsson, M. 2012. Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fun. Genet. Biol. 49, 717–730.

    Article  CAS  Google Scholar 

  • van Munster, J.M., van der Kaaij, R.M., Dijkhuizen, L., and van der Maarel, M.J. 2012. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology 158, 2168–2179.

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan, N., Kalpana, D., Han, J.H., Cha, H.J., and Lee, Y.S. 2011. A novel low temperature chitinase from the marine fungus Plectosphaerella sp. strain MF-1. Bot. Mar. 54, 75–81.

    Article  CAS  Google Scholar 

  • Yan, N. and Chen, X. 2015. Sustainability: Don’t waste seafood waste. Nature 524, 155–157.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S., Fu, X., Yan, Q., Jiang, Z., and Wang, J. 2016. Biochemical characterization of a novel acidic exochitinase from Rhizomucor miehei with antifungal activity. J. Agric. Food Chem. 64, 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Yu, G., Xie, L.Q., Li, J.T., Sun, X.H., Zhang, H., Du, Q., Li, Q.Y., Zhang, S.H., and Pan, H.Y. 2015. Isolation, partial characterization, and cloning of an extracellular chitinase from the entomopathogenic fungus Verticillium lecanii. Genet. Mol. Res. 14, 2275–2289.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Bao, B., Dang, H.T., Hong, J., Lee, H.J., Yoo, E.S., Bae, K.S., and Jung, J.H. 2009. Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. J. Nat. Prod. 72, 270–275.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Kang, L., Niu, X., Wang, J., Liu, Z., and Yuan, S. 2016. Purification, characterization and physiological significance of a chitinase from the pilei of Coprinopsis cinerea fruiting bodies. FEMS Microbiol. Lett. 363, fnw120.

    Google Scholar 

  • Zuccaro, A., Summerbell, R.C., Gams, W., Schroers, H.J., and Mitchell, J.I. 2004. A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud. Mycol. 50, 283–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawoon Chung.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, D., Baek, K., Bae, S.S. et al. Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J Microbiol. 57, 372–380 (2019). https://doi.org/10.1007/s12275-019-8469-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8469-0

Keywords

Navigation