Skip to main content
Log in

Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Three endochitinase-encoding genes, cr-ech58, cr-ech42 and cr-ech37 were identified and characterised from the mycoparasitic C. rosea strain IK726. The endochitinase activity was specifically induced in media containing chitin or Fusarium culmorum cell walls as sole carbon sources. RT-PCR analysis showed that the three genes were differentially expressed. The expression of the cr-ech42 and cr-ech37 genes was triggered by F. culmorum cell walls and chitin whereas glucose repressed their expression. In contrast, the expression of cr-ech58 was not triggered by F. culmorum cell walls and chitin, suggesting a different role for this endochitinase. Phylogenetically, the cr-ech42 and cr-ech37 genes showed to be orthologous to endochitinase 42 and 37 kDa encoding genes from other mycoparasitic fungi, while no orthologous gene for the cr-ech58 gene was found. Three genetically modified mutants of C. rosea were made by disruption of the endochitinase genes via Agrobacterium-mediated transformation and their biocontrol activity was evaluated. While in planta bioassays showed no significant difference in biocontrol efficacy between the disruptants and the wildtype, the real time RT-PCR analysis showed that disruption of each endochitinase gene affected the activity of C. rosea during interaction with F. culmorum in liquid cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, Heijne GV, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Cabib E (1987) The synthesis and degradation of chitin. Adv Enzymol 59:59–101

    PubMed  CAS  Google Scholar 

  • Davila M, Acosta N, Betancourt C, Negron J (1999) Chitinolytic capacity of fungi isolated from agricultural soils infested with the root-knot nematode (Meloidogyne spp.) in Puerto Rico. J Agr Univ Puert Rico 83:189–199

    Google Scholar 

  • Dugan FM, Lupien SL, Hernandez-Bello M, Peever TL, Chen W (2005) Fungi resident in chickpea debris and their suppression of growth and reproduction of Didymella rabiei under laboratory conditions. J Phytopathol 153:431–439

    Article  Google Scholar 

  • Frandsen RJN, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Google Scholar 

  • Goedegebuur F, Fowler T, Phillips J, Van Der Kley P, Van Solingen P, Dankmeyer L, Power SD (2002) Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Curr Genet 41:89–98

    Article  PubMed  CAS  Google Scholar 

  • Haran S, Schickler H, Oppenheim A, Chet I (1996) Differential expression of Trichoderma harzianum chitinases during mycoparasitism. Phytopathology 86:980–985

    Article  CAS  Google Scholar 

  • Hayes CK, Klemsdal S, Lorito M, Di Pietro A, Peterbauer C, Nakas JP, Tronsmo A, Harman GE (1994) Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene 138:143–148

    Article  PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Inglis GD, Kawchuk LM (2002) Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48:60–70

    Article  PubMed  CAS  Google Scholar 

  • Jensen B, Knudsen IMB, Jensen DF, Hockenhull J (2000) Biological seed treatment of cereals with fresh and long term stored formulations of Gliocladium roseum: biocontrol efficacy against Fusarium culmorum. Eur J Plant Pathol 106:233–242

    Article  Google Scholar 

  • Jensen B, Knudsen IMB, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94:551–560

    Article  PubMed  Google Scholar 

  • Kim DJ, Baek JM, Uribe P, Kenerley CM, Cook DR (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    Article  PubMed  CAS  Google Scholar 

  • Knudsen IMB, Hockenhull J, Jensen DF (1995) Biocontrol of seedling diseases caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathol 44:467–477

    Article  Google Scholar 

  • Knudsen IMB, Hockenhull J, Jensen DF, Gerhardson B, Hökeberg M, Tahvonen R, Teperi E, Sundheim L, Henriksen B (1997) Selection of biological control agents for controlling soil- and seed-borne pathogens in the field. Eur J Plant Pathol 103:775–784

    Article  Google Scholar 

  • Knudsen IMB, Thomsen KA, Jensen B, Poulsen KM (2004) Effects of hot water treatment, biocontrol agents, disinfectants and a fungicide on storability of English oak acorns and control of the pathogen, Ciboria batschiana. Forest Pathol 34:47–64

    Article  Google Scholar 

  • Li DC (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  CAS  Google Scholar 

  • Li GQ, Huang HC, Kokko EG, Acharya SN (2002) Ultrastructural study of mycoparasitism of Gliocladium roseum on Botrytis cinerea. Bot Bull Acad Sin 43:211–218

    CAS  Google Scholar 

  • Li GQ, Huang HC, Acharya SN, Erickson RS (2004) Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions. Plant Dis 88:1246–1251

    Article  Google Scholar 

  • Liang X, Teng A, Chen S, Xia D, Felgner PL (2005) Rapid and enzyme less cloning of nucleic acid fragments. United States patent no. 6,936,470. B2

  • Lorito M (1998) Chitinolytic enzymes and their genes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Vol 2. Enzymes, biological control and commercial applications. Taylor & Francis, London, pp 73–99

    Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes of Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Luongo L, Galli M, Coraz L, Meekes E, De Haas L, Plas LV, Köhl J (2005) Potential of fungal antagonists for biocontrol of Fusarium spp. In wheat and maize through competition in crop debris. Biocontrol Sci Technol 15:229–242

    Article  Google Scholar 

  • Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858–1863

    PubMed  CAS  Google Scholar 

  • Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155

    Article  PubMed  CAS  Google Scholar 

  • Møller K, Jensen B, Paludan Andersen H, Stryhn H, Hockenhull J (2003) Biocontrol of Pythium tracheiphilum in Chinese cabbage by Clonostachys rosea under field conditions. Biocontrol Sci Technol 13:171–182

    Article  Google Scholar 

  • Nakahara K, Yoshida K, Ito T, Suzaki I, Kudo A (2000) Cloning and sequencing of endochitinase genes from Gliocladium virens and Trichoderma species. Arch Phytopathol Pflanzenschutz 33:519–527

    Article  Google Scholar 

  • Nielsen MN, Sørensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  Google Scholar 

  • Ramot O, Viterbo A, Friesem D, Oppenheim A, Chet I (2004) Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. Curr Genet 45:205–213

    Article  PubMed  CAS  Google Scholar 

  • Roberti R, Zakrisson E, Flamigni F, De Vero L, Cesari A (2002) Antagonistic fungi producing hydrolytic enzymes, active in degrading the cell wall of some foot rot pathogens (Fusarium spp.) of wheat. J Plant Dis Prot 109:101–108

    CAS  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Res 26:1628–1635

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host–parasite interaction. FEMS Microbiol Rev 11:317–338

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Screen SE, Hu G, Leger RJS (2001) Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J Invertebr Pathol 78:260–266

    Article  PubMed  CAS  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    Article  PubMed  CAS  Google Scholar 

  • Sutton JC, Li DW, Peng G, Yu H, Zhang P, Valdebeneito-Sanhueza RM (1997) Gliocladium roseum: a versatile adversary of Botrytis cinerea in crops. Plant Dis 81:316–328

    Article  Google Scholar 

  • Tatusova TA, Madden TL (1999) Blast 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Haran S, Friesem D, Ramot O, Chet I (2001) Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 200:169–174

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002) Expression regulation of the endochitinase chit36 from Thricoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    Article  PubMed  CAS  Google Scholar 

  • Woo SL, Donzelli B, Scala F, Mach RL, Harman GE, Kubicek CP, Sorbo G, Lorito M (1999) Disruption of ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum strain P1. Mol Plant Microbe Interact 12:419–429

    Article  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genomics 268:645–655

    PubMed  CAS  Google Scholar 

  • Zwiers L-H, De Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Danish Research Agency, Ministry of Science Technology and Innovation (Grant No.: 23-04-0081) as well as financial support to Mojtaba Mamarabadi from the Iranian Ministry of Science, Research and Technology is gratefully acknowledged. Excellent technical support from Karin Olesen is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Lübeck.

Additional information

Communicated by U. Kück.

Electronic supplementary material

Below is the link to the electronic supplementary material.

294_2008_199_MOESM1_ESM.doc

Supplementary material. Nucleotide and deduced amino acid sequence of cr-ech58 (A), cr-ech42 (B) and cr-ech37 (C). The nucleotide sequences are numbered on the left relative to the first nucleotide of the initiation codon, and the amino acid sequences are numbered on the right. The putative TATA box, CAAT box and poly A-tail are underlined. The putative transcription start site is in bold capital letter. The translation and stop sites are in bold italics. The cr-ech58 and cr-ech42 open reading frames were interrupted by three and two introns, respectively, which were shown with --- and the donor site, acceptor site and lariat sequence are marked with iii. The amino acid signal peptides are shown in bold letters. (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamarabadi, M., Jensen, B. & Lübeck, M. Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Curr Genet 54, 57–70 (2008). https://doi.org/10.1007/s00294-008-0199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0199-5

Keywords

Navigation