Skip to main content
Log in

Mycobiota of ground red pepper and their aflatoxigenic potential

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

To investigate contamination of ground red pepper with fungi and mycotoxin, we obtained 30 ground red pepper samples from 15 manufacturers in the main chili-pepper-producing areas in Korea. Fungal contamination was evaluated by spreading diluted samples on potato dextrose agar plates. The total fungi counts ranged from 0 to 7.3 × 103 CFU/g. In the samples, the genus Aspergillus had the highest incidence, while Paecilomyces was isolated most frequently. The next most frequent genera were Rhizopus, Penicillium, Cladosporium, and Alternaria. Within Aspergillus, A. ruber was predominant, followed by A. niger, A. amstelodami, A. ochraceus, A. terreus, A. versicolor, A. flavus, and A. fumigatus. The samples were analyzed for aflatoxins, ochratoxin A, and citrinin by ultra-perfomance liquid chromatography (UPLC) with a fluorescence detector. Ochratoxin A was detected from three samples at 1.03‒2.08 μg/kg, whereas no aflatoxins or citrinin were detected. To test the potential of fungal isolates to produce aflatoxin, we performed a PCR assay that screened for the norB-cypA gene for 64 Aspergillus isolates. As a result, a single 800-bp band was amplified from 10 A. flavus isolates, and one Aspergillus sp. isolate. UPLC analyses confirmed aflatoxin production by nine A. flavus isolates and one Aspergillus sp. isolate, which produced total aflatoxins at 146.88‒909.53 μg/kg. This indicates that continuous monitoring of ground red pepper for toxigenic fungi is necessary to minimize mycotoxin contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarca, M., Bragulat, M., Castella, G., and Cabanes, F. 1994. Ochratoxin A production by strains of Aspergillus niger var. niger. Appl. Environ. Microbiol. 60, 2650–2652.

    CAS  PubMed  Google Scholar 

  • Amaike, S. and Keller, N.P. 2011. Aspergillus flavus. Annu. Rev. Phytopathol. 49, 107–133.

    Article  CAS  PubMed  Google Scholar 

  • Aydin, A., Erkan, M.E., Baskaya, R., and Ciftcioglu, G. 2007. Determination of aflatoxin B1 levels in powdered red pepper. Food Control 18, 1015–1018.

    Article  CAS  Google Scholar 

  • Aziz, N.H., Youssef, Y.A., El-Fouly, M.Z., and Moussa, L.A. 1998. Contamination of some common medicinal plant samples and spices by fungi and their mycotoxins. Bot. Bull. Acad. Sin. 39, 279–285.

    Google Scholar 

  • Bellí, N., Ramos, A., Sanchis, V., and Marin, S. 2004. Incubation time and water activity effects on ochratoxin A production by Aspergillus section Nigri strains isolated from grapes. Lett. Appl. Microbiol. 38, 72–77.

    Article  PubMed  Google Scholar 

  • Beuchat, L.R. 1992. Media for detecting and enumerating yeasts and moulds. Int. J. Food Microbiol. 17, 145–158.

    Article  CAS  PubMed  Google Scholar 

  • Bokhari, F.M. 2007. Spices mycobiota and mycotoxins available in Saudi Arabia and their abilities to inhibit growth of some toxigenic fungi. Mycobiology 35, 47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokhari, F., Gherbawy, Y., and Najjar, A. 2009. Detection of the patulin-producing potential of some Paecilomyces variotii strains isolated from the air samples of Jeddah City, Saudi Arabia, using the RAPD-PCR technique. Aerobiologia 25, 49–54.

    Article  Google Scholar 

  • Dao, H.P., Mathieu, F., and Lebrihi, A. 2005. Two primer pairs to detect OTA producers by PCR method. Int. J. Food Microbiol. 104, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Dombrink-Kurtzman, M. and McGovern, A.E. 2007. Species-specific identification of Penicillium linked to patulin contamination. J. Food Prot. 70, 2646–2650.

    CAS  PubMed  Google Scholar 

  • Ehrlich, K.C., Chang, P.K., Yu, J., and Cotty, P.J. 2004. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl. Environ. Microbiol. 70, 6518–6524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdogan, A. 2004. The aflatoxin contamination of some pepper types sold in Turkey. Chemosphere 56, 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Fazekas, B., Tar, A., and Kovács, M. 2005. Aflatoxin and ochratoxin A content of spices in Hungary. Food Addit. Contam. 22, 856–863.

    Article  CAS  PubMed  Google Scholar 

  • Geiser, D.M., Dorner, J.W., Horn, B.W., and Taylor, J.W. 2000. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet. Biol. 31, 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Glass, N.L. and Donaldson, G. 1995. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61, 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hacking, A. and Rosser, W.R. 1981. Patulin production by Paecilomyces species isolated from silage in the United Kingdom. J. Sci. Food. Agric. 32, 620–623.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S.B., Lee, M., Kim, D.H., Chung, S.H., Shin, H.D., and Samson, R.A. 2013. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes. J. Microbiol. 51, 766–772.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, M.S., Ahn, J.J., Akram, K., Kim, G.R., Im, J.G., and Kwon, J.H. 2013. Microbiological and physicochemical quality characterization of commercial red pepper powders. J. Food Hyg. Safety 28, 1–6.

    Article  Google Scholar 

  • Jeswal, P. and Kumar, D. 2015. Mycobiota and natural incidence of aflatoxins, ochratoxin A, and citrinin in Indian spices confirmed by LC-MS/MS. Int. J. Microbiol. 2015, 1–8.

    Article  Google Scholar 

  • Kim, S.H. 2014. World trend of dried red pepper industry. World Agriculture 166, 73–92.

    Google Scholar 

  • Kim, H.J., Goo, M.S., Park, J.B., Jeon, H.S., Kim, Y.J., Hong, S.I., Oh, S.Y., Jang, H.J., Lee, N.L., Choi, S.Y., et al. 2011. Development of safety management technology for red pepper processing factory based on quantitative risk assessment. Korea Food Research Institute (KFRI), Seongnam, Republic of Korea.

  • Kim, D.H., Jang, H.S., Kim, Y.M., and Ahn, J.S. 2009. Survey for contamination and study for reduction of ochratoxin A and aflatoxin in red pepper. J. Food Hyg. Safety 24, 299–306.

    Google Scholar 

  • Ko, H.J., Kim, D., Choi, J., Yoo, Y.J., and Kyung, K.H. 2004. Mycology of red pepper (Capsicum annuum L.) fruits discolored due to mold growth during sun-drying. Food Sci. Biotechnol. 13, 627–631.

    Google Scholar 

  • Lee, T., Kim, S., Busman, M., Proctor, R.H., Ham, H., Lee, S., Hong, S.K., and Ryu, J.G. 2015. Rapid detection method for fusaric acid-producing species of Fusarium by PCR. Res. Plant Dis. 21, 326–329.

    Article  Google Scholar 

  • Lee, W., Sa, J.H., Lee, H.H., Shin, I.C., Shin, H.Y., Bae, C.M., Kim, N.S., You, M.J., and Han, K.S. 2013. Safety assessment of aflatoxins, ochratoxin A and fumonisins in Gangwon province foodstuffs. Rep. Inst. Health Environ. 24, 25–38.

    CAS  Google Scholar 

  • Leitao, J., Le Bars, J., and Bailly, J.R. 1989. Production of aflatoxin B1 by Aspergillus ruber THOM and CHURCH. Mycopathologia 108, 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Mandeel, Q.A. 2005. Fungal contamination of some imported spices. Mycopathologia 159, 291–298.

    Article  PubMed  Google Scholar 

  • Park, M.J., Yoon, M.H., Hong, H.G., Joe, T.S., Lee, I.S., Park, J.H., and Ko, H.U. 2007. A study no the conditions of mycotoxin production–Based on the aflatoxin contents and production in food. Rep. Inst. Health Environ. 20, 183–188.

    Google Scholar 

  • Pfohl-Leszkowicz, A. and Manderville, R.A. 2007. Ochratoxin a: an overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 51, 61–99.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 2009. Fungi and food spoilage. Springer, Boston, MA,USA.

    Book  Google Scholar 

  • Rustom, I.Y.S. 1997. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chem. 59, 57–67.

    Article  CAS  Google Scholar 

  • Salari, R., Najafi, H., Boroushaki, M., Mortazavi, S., and Fathi Najafi, M. 2012. Assessment of the microbiological quality and mycotoxin contamination of Iranian red pepper spice. J. Agri. Sci. Tech. 14, 1511–1521.

    CAS  Google Scholar 

  • Santos, L., Marin, S., Mateo, E.M., Gil-Serna, J., Valle-Algarra, F.M., Patino, B., and Ramos, A.J. 2011. Mycobiota and co-occurrence of mycotoxins in Capsicum powder. Int. J. Food Microbiol. 151, 270–276.

    Article  CAS  PubMed  Google Scholar 

  • Vrabcheva, T.M. 2000. Mycotoxins in spices. Vopr. Pitan. 69, 40–43.

    CAS  PubMed  Google Scholar 

  • White, T.J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds.), PCR Protocols: a guide to methods and applications, pp. 315–322. Academic Press, San Diego, California, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ham, H., Kim, S., Kim, MH. et al. Mycobiota of ground red pepper and their aflatoxigenic potential. J Microbiol. 54, 832–837 (2016). https://doi.org/10.1007/s12275-016-6480-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6480-2

Keywords

Navigation