Skip to main content
Log in

Prevalence of amino acid changes in the yvqF, vraSR, graSR, and tcaRAB genes from vancomycin intermediate resistant Staphylococcus aureus

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Vancomycin intermediate Staphylococcus aureus (VISA) strains are increasingly prevalent in the hospital setting, and are of major concern in the treatment of methicillin-resistant S. aureus infections. Multiple mutations in vancomycin-susceptible S. aureus (VSSA) strains likely led to the emergence of VISA, and point mutations in the agr, orf1, yvqF, vraSR, graSR, and tcaRAB genes of VISA strains have been shown to contribute to glycopeptide resistance. Therefore, we investigated point mutations in these genes from 87 VISA and 27 VSSA clinical strains isolated from Korean hospitals. All strains were assigned an agr type (I, II, or III) on the basis of multiplex PCR, with the majority of VISA strains belonging to agr groups I and II. Sequencing revealed amino acid changes in vraS from VISA strains which were not present in the VSSA strains. The E59D substitution in the vraR gene occurred in 36.3% of VSSA/agrI and 92.7% of VISA/agrI strains, suggesting that this mutation associated with emergence of VISA/agrI strains. VISA strains were classified into 31 mutation patterns according to mutations in the yvqF, vraSR, graSR, and tcaRAB genes. In addition, the mutation patterns were correlated with agr and sequence type (ST). The most prevalent pattern included agr type I (ST 72) strains with E59D (vraR), L26F and T224I (graS), D148Q (graR), and L218P, R283H and G312D (tcaA) amino acid substitutions. The minimum inhibitory concentration (MIC) range of mutation pattern 5 toward oxacillin and imipenem was much lower than that of patterns 6 and 24. These results improve our understanding of emergence of VISA strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chung, G.T., Cha, J.O., Han, S.Y., Jang, H.S., Lee, K.M., Yoo, J.I., Yoo, J.S., Kim, H.B., Eun, S.H., Kim, B.S., et al. 2010. Nationwide surveillance study of vancomycin intermediate Staphylococcus aureus strains in Korean hospitals from 2001 to 2006. J. Microbiol. Biotechnol. 20, 637–642.

    PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). 2007. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, 7th ed. Clinical and Laboratory Standards Institute Document M100-S20. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

    Google Scholar 

  • Cui, L., Lian, J.Q., Neoh, H.M., Reyes, E., and Hiramatsu, K. 2005. DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 49, 3404–3413.

    Article  PubMed  CAS  Google Scholar 

  • Cui, L., Neoh, H.M., Shoji, M., and Hiramatsu, K. 2009. Contribution of vraSR and graSR point mutation to vancomycin resistance in vancomycin intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 1231–1234.

    Article  PubMed  CAS  Google Scholar 

  • Deresinski, S. 2005. Methicillin-resistant Staphylococcus aureus: An evolutionary, epidemiologic, and therapeutic odyssey. Clin. Infect. Dis. 40, 562–573.

    Article  PubMed  CAS  Google Scholar 

  • Enright, M.C., Day, N.P., Davies, C.R., Peacock, S.J., and Spratt, B.G. 2000. Multilocus sequencing typing for characterization of methicillin resistant and methicillin susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015.

    PubMed  CAS  Google Scholar 

  • Gilot, P., Lina, G., Thierry, C., and Poutrel, B. 2002. Analysis of the genetic variability of genes encoding the RNA III-activating components Agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J. Clin. Microbiol. 40, 4060–4067.

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu, K., Aritaka, N., Hanaki, H., Shiori, K., Yasuyuki, H., Satoshi, H., Yoshinosuke, J., and Kobayashi, I. 1997. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350, 1670–1673.

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu, K., Okuma, K., Ma, X.X., Yamamoto, M., Hori, S., and Kapi, M. 2002. New trends in Staphylococcus aureus infections: Glycopeptide resistance in hospital and methicillin resistance in the community. Curr. Opin. Infect. Dis. 15, 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Howden, B.P., Davies, J.K., Johnson, P.D., Stinear, T.P., and Gravson, M.L. 2010. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin intermediate and heterogeneous vancomycin intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clin. Microbiol. Rev. 23, 99–139.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, A., Turck, M., Szekat, C., Naqel, M., Clever, I., and Bierbaum, G. 2007. Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. Int. J. Med. Microbiol. 297, 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Kato, Y., Suzuki, T., Ida, T., and Maebashi, K. 2010. Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: Predominance of amino acid substitutions in YvqF/VraSR. J. Antimicrob. Chemother. 65, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda, M., Kuroda, H., Oshima, T., Takeuchi, F., Mori, H., and Hiramatsu, K. 2003. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol. Microbiol. 49, 807–821.

    Article  PubMed  CAS  Google Scholar 

  • Maki, H., McCallum, N., Bischoff, M., Wada, A., and Brigitte, B.B. 2004. tcaA Inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48, 1953–1959.

    Article  PubMed  CAS  Google Scholar 

  • McCallum, N., Brassinga, A.K., Sifri, C.D., and Brigitte, B.B. 2007. Functional characterization of TcaA: Minimal requirement for teicoplanin susceptibility and role in Caenorhabditis elegans virulence. Antimicrob. Agents Chemother. 51, 3836–3843.

    Article  PubMed  CAS  Google Scholar 

  • Meehl, M., Herbert, S., Gotz, F., and Cheung, A. 2007. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 2679–2689.

    Article  PubMed  CAS  Google Scholar 

  • Moellering Jr., R.C., 2005. The management of infections due to drug-resistant Gram-positive bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 24, 777–779.

    Article  PubMed  Google Scholar 

  • Neoh, H.M., Cui, L., Yuzawa, H., Takeuchi, F., Matsuo, M., and Hiramatsu, K. 2008. Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin intermediate resistance to vancomycin intermediate resistance. Antimicrob. Agents Chemother. 52, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Renzoni, A., Kelley, W.L., Barras, C., Monod, A., Huggler, E., Francois, P., Schrenzel, J., Studer, R., Vaudaux, P., and Lew, D.P. 2009. Identification by genomic and genetic analysis of two new genes playing a key role in intermediate glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 903–911.

    Article  PubMed  CAS  Google Scholar 

  • Sakoulas, G., Eliopoulos, G.M., Moellering, R.C., Wennerstn, C., Venkataraman, L., Novick, R.P., and Gold, H.S. 2002. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother. 46, 1492–1502.

    Article  PubMed  CAS  Google Scholar 

  • Seidl, K., Stucki, M., Ruegg, M., Goerke, C., Wolz, C., Harris, L., Berger, B.B., and Bischoff, M. 2006. Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob. Agents Chemother. 50, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Singh, V.K., Schmidt, J.L., Jayaswal, R.K., and Wilkinson, B.J. 2003. Impact of sigB mutation on Staphylococcus aureus oxacillin and vancomycin resistance varies with parental background and method of assessment. Int. J. Antimicrob. Agents 21, 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Tenover, F.C. and Moellering, R.C. 2007. The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin. Infect. Dis. 44, 1208–1215.

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa, J., Aminaka, M., Okuzumi, K., Kobayashi, H., Katayama, Y., Kondo, S., Oquri, T., Hori, S., Cui, L., Ito, T., et al. 2012. Heterogeneously vancomycin intermediate Staphylococcus aureus (hVISA) emerged before the clinical introduction of vancomycin in Japan: A retrospective study. J. Infect. Chemother. 18, 406–409.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Seon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, J.I., Kim, J.W., Kang, G.S. et al. Prevalence of amino acid changes in the yvqF, vraSR, graSR, and tcaRAB genes from vancomycin intermediate resistant Staphylococcus aureus . J Microbiol. 51, 160–165 (2013). https://doi.org/10.1007/s12275-013-3088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3088-7

Keywords

Navigation