Skip to main content
Log in

Characterization of nitrogen-fixing bacteria isolated from field-grown barley, oat, and wheat

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Diazotrophic bacteria were isolated from the rhizosphere of field-grown Triticum aestivum, Hordeum vulgare, and Avena sativa grown in various regions of Greece. One isolate, with the highest nitrogen-fixation ability from each of the eleven rhizospheres, was selected for further characterisation. Diazotrophic strains were assessed for plant-growth-promoting traits such as indoleacetic acid production and phosphate solubilisation. The phylogenies of 16S rRNA gene of the selected isolates were compared with those based on dnaK and nifH genes. The constructed trees indicated that the isolates were members of the species Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. Furthermore, the ipdC gene was detected in all A. brasilence and one A. zeae isolates. The work presented here provides the first molecular genetic evidence for the presence of culturable nitrogen-fixing P. stutzeri and A. zeae associated with field-grown A. sativa and H. vulgare in Greece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldani, V.L.D., M.A. de B. Alvarez, J.I. Baldani, and J. Dobereiner. 1986. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90, 35–46.

    Article  Google Scholar 

  • Baldani, J.I., V.L.D. Caruso, S.R. Baldani, J. Goi, and J. Dobereiner. 1997. Recent advances in BNF with non-legume plants. Soil Biol. Biochem. 29, 911–922.

    Article  CAS  Google Scholar 

  • Baldani, V.L.D. and J. Dobereiner. 1980. Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol. Biochem. 12, 433–439.

    Article  Google Scholar 

  • Bashan, Y., G. Holguin, and L.E. Bashan. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Can. J. Microbiol. 50, 521–577.

    Article  PubMed  CAS  Google Scholar 

  • Belimov, A.A., A.M. Kunakova, N.D. Vasilyeva, E.V. Gruzdeva, N.I. Vorobiev, A.P. Kojemiakov, A.F. Khamova, S.M. Postavskaya, and S.A. Sokova. 1995. Relationship between survival rates of associative nitrogen-fixers on roots and yield response of plants to inoculation. FEMS Microbiol. Ecol. 17, 187–196.

    Article  CAS  Google Scholar 

  • Bennasar, A., R. Rosseló-Mora, J. Lalucat, and E.R.B Moore. 1996. 16S gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int. J. Syst. Bacteriol. 46, 200–205.

    Article  PubMed  CAS  Google Scholar 

  • Blaha, D., C. Prigent-Comparet, M.S. Mizra, and Y. Moenne-Loccoz. 2006. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol. Ecol. 56, 455–470.

    Article  PubMed  CAS  Google Scholar 

  • Boddey, R.M., J.C. Polidoro, A.S. Resende, B.J.R. Alves, and S. Urquiaga. 2001. Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugarcane and other grasses. Aust. J. Plant Physiol. 28, 889–895.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J., H.K. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.M. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  PubMed  CAS  Google Scholar 

  • Creus, C.M., M. Graziano, E.M. Casanovas, M.A. Pereyra, M. Simontacchi, S. Puntarulo, C.A. Barassi, and L. Laratima. 2005. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Dalla-Santa, O.R., R.F. Hernadez, G.L.M. Alvarez, P. Ronzelli Jr., and C.R. Soccol. 2004. Azospirillum sp. inoculation in wheat, barley and oats seeds greenhouse experiments. Brazil Arch. Biol. Tech. 47, 843–850.

    Article  Google Scholar 

  • Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant-growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22, 107–149.

    Article  CAS  Google Scholar 

  • Doty, S.L., B. Oakley, G. Xin, J.W. Kang, G. Singleton, Z. Khan, A. Vajzovits, and J.T. Staley. 2009. Diazotrophic endophytes of native blackcotton and willow. Symbiosis 47, 23–33.

    Article  CAS  Google Scholar 

  • Eckford, R., F.D. Cook, D. Saul, J. Aislabie, and J. Foght. 2002. Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl. Environ. Microbiol. 8, 5181–5185.

    Article  Google Scholar 

  • El-Komy, H.M.A. 2005. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition. Food Technol. Biotechnol. 43, 19–27.

    Google Scholar 

  • Francke, C., K. Lindstrom, and C. Elmerrich. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321, 35–59.

    Article  Google Scholar 

  • Gauthier, FG., J.D. Neufeld, B.T. Driscoll, and F.S. Archobald. 2000. Coliform bacteria and nitrogen fixation in pulp and paper mill affluent treatment systems. Appl. Environ. Microbiol. 66, 5155–5160.

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos, D.G., P. Fiddaman, C. Leifert, and N.E. Malathrakis. 2002. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J. Appl. Microbiol. 6, 1078–1086.

    Article  Google Scholar 

  • Glickman, E. and Y. Dessaux. 1995. A critical evaluation of the specificity of Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793–796.

    Google Scholar 

  • Hartmann, A., M. Singh, and W. Klingmuller. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can. J. Microbiol. 29, 916–923.

    Article  CAS  Google Scholar 

  • Hatayama, K., S. Kawai, H. Shoun, Y. Ueda, and A. Nakamura. 2005. Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int. J. Syst. Evol. Microbiol. 55, 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.H., F.L. Lee, and J.S. Liou. 2010. Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques. Antonie van Leeuwenhoek 97, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Idris, M., F.P. Vinther, and V. Jensen. 2007. Biological nitrogen fixation associated with roots of field-grown barley (Hordeum vulgare L.). J. Plant Nutr. Soil Sci. 144, 385–394.

    Google Scholar 

  • Kaneko, T., K. Minamisawa, T. Isawa, H. Nakatsukasa, H. Mitsui, Y. Kawaharada, Y. Nakamura, and et al. 2010. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res. 17, 37–50.

    Article  PubMed  CAS  Google Scholar 

  • Krotzky, A. and D. Werner. 1987. Nitrogen fixation in Pseudomonas stutzeri. Arch. Microbiol. 147, 48–57.

    Article  CAS  Google Scholar 

  • Kulakov, L.A., M.B. McAlister, K.L. Ogden, M.J. Larkin, and J.F. O’Hanlon. 2002. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl. Environ. Microbiol. 68, 1548–1555.

    Article  PubMed  CAS  Google Scholar 

  • Lalucat, J., A. Bennasar, R. Bosch, E. Garcia-Valdes, and N.J. Palleroni. 2006. Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev. 70, 510–547.

    Article  PubMed  CAS  Google Scholar 

  • Liba, C.M., F.I.S. Ferrara, G.P. Mangio, F. Fantinatt-Garbogini, R.C. Alnuequeque, C. Pavan, P.L. Ramos, C.A. Moreira-Filho, and H.R. Barbosa. 2006. Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohotmones. J. Appl. Microbiol. 101, 1076–1086.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M., K. Smalla, H.J.D. Heyer, and J.D. van Elsas. 2000. Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded soil microcosms planted with rice seedling. Soil Appl. Ecol. 15, 211–225.

    Article  Google Scholar 

  • Lorenz, M.G. and J. Sikorski. 2000. The potential for intraspecific horizontal gene exchange by natural genetic transformation: sexual isolation among genomovars of Pseudomonas stutzeri. Microbiology 146, 3081–3090.

    PubMed  CAS  Google Scholar 

  • Malhorta, M. and S. Srivastava. 2008. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant-growth-promotion. Antonie van Leeuwenhoek 93, 425–433.

    Article  Google Scholar 

  • Mehnaz, S., B. Weselowski, F. Aftab, S. Zahid, G. Lazarovits, and J. Iqbal. 2009. Isolation, characterization, and effect of fluorescent pseudomonads on micropropagated sugarcane. Can. J. Microbiol. 55, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz, S., B. Weselowski, and G. Lazarovits. 2007. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int. J. Syst. Evol. Microbiol. 57, 2805–2809.

    Article  PubMed  CAS  Google Scholar 

  • Mirza, M.S., W. Ahmad, F. Latif, J. Haurat, R. Bally, P. Normand, and K.A. Malik. 2001. Isolation, partial characterization, and the effect of plant-growth promoting bacteria (PGBP) on micro-propagated sugarcane in vitro. Plant Soil 237, 47–54.

    Article  CAS  Google Scholar 

  • Mirza, M.S., S. Mehnaz, P. Normand, C. Prigent-Combaret, Y. Moenne-Loccoz, R. Bally, and K.A. Malik. 2006. Molecular characterization of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol. Fert. Soils 43, 163–170.

    Article  CAS  Google Scholar 

  • Mullet, M., J. Lalucat, and E. Garcia-Valdez. 2010. DNA-sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 12, 1513–1530.

    Google Scholar 

  • Muthukumarasamy, R., U.G. Kang, K.D. Park, W.T. Jeon, C.Y. Park, C.Y. Cho, S.W. Kwon, J. Song, D.H. Roh, and G. Revarhi. 2006. Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J. Appl. Microbiol. 102, 981–991.

    Google Scholar 

  • Naz, I. and A. Bano. 2010. Biochemical, molecular characterization and growth effects of phosphate solubilizing Pseudomonas sp. isolated from weeds grown in salt range of Pakistan. DOI 10.1007/s11104-010-0372-8.

  • Pedraza, R.O., A. Ramirez-Mata, M.L. Xiqui, and B.E. Baca. 2006. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol. Lett. 233, 15–21.

    Article  Google Scholar 

  • Peix, A., R. Rivas, P.F. Mateos, M. Martinez-Molina, C. Rodriguez-Valero, and E. Velazquez. 2003. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilize phosphate in vivo. Int. J. Syst. Evol. Microbiol. 53, 2067–2072.

    Article  PubMed  CAS  Google Scholar 

  • Pikovaskya, R.I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiol. 17, 362–370.

    Google Scholar 

  • Rediers, H., J. Vanderleyden, and R. De Mot. 2009. Nitrate respiration in Pseudomonas stutzeri A15 and its involvement in rice and wheat root colonization. Microbiol. Res. 164, 461–468.

    Article  PubMed  CAS  Google Scholar 

  • Reis, V.M., J.I. Baldani, V.L.D. Baldani, and J. Dobereiner. 2000. Biological dinitrogen fixation in gramineae and palm trees. Crit. Rev. Plant Sci. 19, 227–247.

    Article  CAS  Google Scholar 

  • Rodriguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant-growth-promoting bacteria. Plant Soil 287, 15–21.

    Article  CAS  Google Scholar 

  • Rodriguez, H., T. Gonzalez, I. Goire, and Y. Bashan. 2004. Gluconic acid production and phosphate solubilization by plant growthpromoting bacterium Azospirillum spp. Naturwissensch 91, 552–555.

    Article  CAS  Google Scholar 

  • Rodriguez-Caceres, E.A. 1982. Improved medium for isolation of Azospirillum spp. Appl. Environ. Microbiol. 44, 990–991.

    Google Scholar 

  • Roesch, L.F.W., P.D. Quadros, F.A.O. Camargo, and E.W. Triplett. 2007. Screening of diazotrophic bacteria Azospirillum spp. for nitrogen fixation and auxin production in multiple sites in southern Brazil. World J. Microbiol. Biotechnol. 23, 1377–1383.

    Article  CAS  Google Scholar 

  • Sahin, F., R. Cakmackci, and F. Kantar. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265, 123–129.

    Article  CAS  Google Scholar 

  • Sashidar, B. and A.R. Podile. 2010. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J. Appl. Microbiol. 109, 1–12.

    Google Scholar 

  • Seshardi, S., R. Muthukumarasamy, C. Lakshminarasimhan, and S. Ignacimuthu. 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr. Sci. 79, 565–567.

    Google Scholar 

  • Sikorski, J., S. Graupner, G. Lorenz, and W. Wackernagel. 1998. Natural genetic transformation of Pseudomonas stutzeri in a nonsterile soil. Microbiology 144, 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Sirkorski, J., N. Teschner, and W. Wackernagel. 2002. High different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl. Environ. Microbiol. 68, 865–873.

    Article  Google Scholar 

  • Soares, R.A., L.F.W. Roesch, G. Zannatta, F.A. de Oliveira Gamargo, and M.P. Passaglia. 2006. Occurrence and distribution of nitrogen-fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Appl. Soil Ecol. 33, 221–234.

    Article  Google Scholar 

  • Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448.

    Article  PubMed  CAS  Google Scholar 

  • Sperber, J.I. 1957. Solution of mineral phosphate by soil bacteria. Nature 180, 994–995.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E. and J. Ebers. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.

    Google Scholar 

  • Stackebrandt, E., W. Frederiksen, G.M. Garrity, P.A.D. Grimont, P. Kämpfer, M.C.J. Maiden, X. Nesme, and et al. 2002. Report of the ad hoc committee for the revaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Steenhoudt, O. and J. Vanderleyden. 2000. Azospirillum a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24, 487–506.

    Article  PubMed  CAS  Google Scholar 

  • Strepkowski, T., M. Czaplinska, K. Miedzinska, and L. Moulin. 2003. The variable part of the dnaK gene as an alternative marker for phylogenetic studies in Rhizobia and related alpha proteobacteria. Syst. Appl. Microbiol. 26, 483–494.

    Article  Google Scholar 

  • Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Venieraki, A., M. Dimou, P. Pergalis, I. Kefalogianni, I. Chatzipavlidis, and P. Katinakis. 2011. The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb. Ecol. 61, 277–285.

    Article  PubMed  Google Scholar 

  • Vermeiren, H., A. Willem, G. Schoofs, R. de Mot, V. Keijers, W. Hai, and J. Vandeleyden. 1999. The rice inoculant strain A15 is a nitrogen-fixing Pseudomonas stutzeri strain. Syst. Appl. Microbiol. 22, 215–224.

    PubMed  CAS  Google Scholar 

  • Yan, Y., J. Yang, Y. Dou, M. Chen, S. Ping, J. Peng, W. Lu, and et al. 2008. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Nitrogen fixation island and rhizosphere competence traits in the genome of root associated Pseudomonas stutzeri A1501. Proc. Natl. Acad. Sci. USA 105, 7564–7569.

    Article  PubMed  CAS  Google Scholar 

  • Yim, W.J., S. Poonguzhali, M. Madhaiyan, P. Palaniappan, M.A. Siddikee, and T. Sa. 2009. Characterization of plant-growth promoting diazotrophic bacteria isolated from field-grown Chinese cabbage under different fertilization conditions. J. Microbiol. 47, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • You, C.B., H.X. Song, J.P. Wang, P. Lin, and W.L. Hai. 1991. Association of Alcaligenes faecalis with wetland rice. Plant Soil 137, 81–85.

    Article  Google Scholar 

  • Zehr, J.P., B.D. Jenkins, S.M. Short, and G.F. Steward. 2003. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol. 5, 539–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Katinakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venieraki, A., Dimou, M., Vezyri, E. et al. Characterization of nitrogen-fixing bacteria isolated from field-grown barley, oat, and wheat. J Microbiol. 49, 525–534 (2011). https://doi.org/10.1007/s12275-011-0457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0457-y

Keywords

Navigation