Skip to main content
Log in

Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Several chemical changes in soil are associated with plant growth-promoting rhizobacteria. An endosporeforming bacterium, strain XTBG34, was isolated from a Xishuangbanna Tropical Botanical Garden soil sample and identified as Bacillus megaterium. The strain’s volatiles had remarkable plant growth promotion activity in Arabidopsis thaliana plants; after 15 days treatment, the fresh weight of plants inoculated with XTBG34 was almost 2-fold compared with those inoculated with DH5α. Head space volatile compounds produced by XTBG34, trapped with headspace solid phase microextraction and identified by gas chromatography-mass spectrometry, included aldehydes, alkanes, ketones and aroma components. Of the 11 compounds assayed for plant growth promotion activity in divided Petri plates, only 2-pentylfuran increased plant growth. We have therefore identified a new plant growth promotion volatile of B. megaterium XTBG34, which deserves further study in the mechanisms of interaction between plant growth-promoting rhizobacteria and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S., T. Modden, A. Schafer, J. Zhang, W. Miller, and D. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3404.

    Article  PubMed  CAS  Google Scholar 

  • Augusto, F. and A.L.P. Valente. 2002. Applications of solid-phase microextraction to chemical analysis of live biological samples. Trac-Trend. Anal. Chem. 27, 6–7.

    Google Scholar 

  • Cakmakci, R., F. Donmez, A. Aydín, and F. Sahin. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38, 1482–1487.

    Article  CAS  Google Scholar 

  • Choi, O., J. Kim, J.G. Kim, Y. Jeong, J.S. Moon, C.S. Park, and I. Hwang. 2008. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol. 146, 657–668.

    Article  PubMed  CAS  Google Scholar 

  • De Freitas, J.R., M.R. Banerjee, and J.J. Germida. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24, 358–364.

    Article  Google Scholar 

  • Ercolani, G.L. 1991. Distribution of epiphytic bacteria on olive leaves and the influence of age and sampling time. Microb. Ecol. 21, 35–48.

    Article  Google Scholar 

  • Farag, M.A., C.M. Ryu, L.W. Sumner, and P.W. Pare. 2006. GC/MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67, 2262–2268.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–789.

    Article  Google Scholar 

  • Glick, B.R. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria, pp. 1–13. Overview of plant growthpromoting bacteria. Imperial College Press, London, UK.

    Google Scholar 

  • Kloepper, J.W., J. Leong, M. Teintze, and M.N. Schroth. 1980. Enhanced plant growth by siderophores produced by plant growthpromoting rhizobacteria. Nature 286, 885–886.

    Article  CAS  Google Scholar 

  • Kloepper, J.W. and M.N. Schroth. 1978. Plant growth-promoting rhizobacteria on radishes. In Proc. of the 4th Int. Conf. on Plant.

  • Kloepper, J.W. and M.N. Schroth. 1981. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71, 1078–1082.

    Google Scholar 

  • Kloepper, J.W., R.M. Zablotowicz, E.M. Tipping, and R. Lifshitz. 1991. The rhizosphere and plant growth, pp. 315–326. Netherlands.

  • Kumar, S., J. Dudley, M. Nei, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematic, pp. 115–175. Wiley, New York, N.Y., USA.

    Google Scholar 

  • Leong, J. 1986. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24, 187–209.

    Article  CAS  Google Scholar 

  • Li, Y.P. and B. Wilhelm. 2004. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 6, 263–266.

    Google Scholar 

  • Lin, W., Y. Okon, and R.W.F. Hardy. 1983. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol. 45, 1775–1779.

    PubMed  CAS  Google Scholar 

  • Liu, Z.L. and B.J. Sinclair. 1993. Colonization of soybean roots by Bacillus megaterium B 153-2-2. Soil Biol. Biochem. 25, 849–855.

    Article  Google Scholar 

  • Liu, X.M., H.X. Zhao, and S.F. Chen. 2006. Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr. Microbiol. 52, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Loper, J.E. and M.N. Schroth. 1986. Influence of bacteria sources of indol-3-acetic acid on root elongation of sugar beet. Phytopathology 76, 386–389.

    Article  CAS  Google Scholar 

  • MacDonald, E.M.S., G.K. Powell, D.A. Regier, N.L. Glass, F. Roberto, T. Kosuge, and R.O. Morris. 1986. Secretion of zeatin, ribosylzeatin, and ribosyl-1-methylzeatin by Pseudomonas savastanoi 1 plasmid-coded cytokinin biosynthesis. Plant Physiol. 82, 742–747.

    Article  PubMed  CAS  Google Scholar 

  • Rabouille, S., M. Staal, L.J. Stal, and K. Soetaert. 2006. Modeling the dynamic regulation of nitrogen fixation in the Cyanobacterium Trichodesmium sp. Appl. Environ. Microbiol. 72, 3217–3227.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, C.M., M.A. Farag, C.H. Hu, M.S. Reddy, H.X. Wei, P.W. Pare, and J.W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 4927–4932.

    Article  PubMed  CAS  Google Scholar 

  • Safronova, V.I., V.V. Stepanok, G.L. Engqvist, Y.V. Alekseyev, and A.A. Belimov. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fert. Soils 42, 267–272.

    Article  CAS  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sivan, A. and I. Chet. 1992. Microbial control of plant diseases, pp. 335–354. Wiley-Liss.

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Tian, R.R., Y.H. Xie, W.W. Zhu, Y.H. Li, and Y. Zhang. 2007. Activities and toxicity of a novel plant growth regulator 2-furan-2-yl-[1,3] dioxolane. J. Plant Growth Regul. 26, 362–368.

    Article  CAS  Google Scholar 

  • Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31, 1847–1852.

    Article  CAS  Google Scholar 

  • Wady, L., A. Bunte, C. Pehrson, and L. Larsson. 2003. Use of gas chromatography-mass spectrometry/solid phase micro-extraction for the identification of MVOCs from moldy building materials. J. Microbiol. Methods 52, 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., J.J. Pasternak, and R.G. Bernard. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32, 67–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqiu Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C., Li, Z. & Yu, D. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol. 48, 460–466 (2010). https://doi.org/10.1007/s12275-010-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0068-z

Keywords

Navigation