Skip to main content

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 51))

  • 108 Accesses

Abstract

Rhizosphere, the thin layer of soil under the direct influence of plant root, is a nutrient-rich microhabitat. The numbers of bacteria colonizing this niche are 100–1000 times more than the surrounding non-rhizosphere soil. More than 25 bacterial genera have been characterized as plant growth-promoting rhizobacteria, among which Bacillus sp. play a predominant role. Because of the non-fastidious nature and quick colonization of rhizosphere, these gram-positive rods are relatively abundant in the rhizosphere and can exert its plant growth-promoting benefits on the plant involved. Brevibacillus, Lysinibacillus, Bacillus subtilis, Bacillus cereus, and Bacillus amyloliquefaciens are some of the species that can act as plant growth-promoting rhizobacteria (PGPR). Bacillus sp. readily qualify as a PGPR owing to its phytohormone production, nitrogen fixation, siderophore production, hydrogen cyanide production, antagonism against plant pathogens, and production of certain allelochemicals. Some strains of Bacillus sp. show extreme tolerance to heavy metals and can be coupled with phytoremediating plants to remove heavy metal pollutants from contaminated soils. Bacillus sp. isolated from degraded mine soils also show plant growth-promoting effects and can be potentially used as a bioinoculant during the revegetation process of reclamation of mine ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoun H, Pre’vost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Bar T, Okon Y (1992) Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilense Sp7. Symbiosis 13:191–198

    CAS  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolte R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. PNAS 110(17):E1621–E1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake C, Christensen MN, Kov ́acs AT (2021) Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact 34(1):15–25

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Castro-Camba R, Sánchez C, Vidal N, Vielba JM (2022) Interactions of gibberellins with phytohormones and their role in stress responses. Horticulturae 8:241

    Article  Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic MicrobiolJ Basic Microbiol 46:186–195

    Article  CAS  Google Scholar 

  • Chen L, Wang X, Ma Q, Bian L, Liu X, Xu Y, Zhang H, Shao J, Liu Y (2020) Bacillus velezensis CLA178-induced systemic resistance of Rosa multiflora against crown gall disease. Front MicrobiolFront Microbiol 11:587667

    Article  Google Scholar 

  • Chowdappa P, Kumar SPM, Lakshmi MJK, Upreti K (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol ControlBiol Control 65:109–117

    Article  Google Scholar 

  • Chung EJ, Hossai MT, Khan A, Kim KH, Jeon CO, Chung YR (2015) Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of Rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in Rice. Plant Pathol JPlant Pathol J 31(2):152–164

    Article  Google Scholar 

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99(5):1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang R (2018) Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant-Microbe Interact 31(10):995–1005

    Article  CAS  PubMed  Google Scholar 

  • Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by bacillus species. J BiotechnolJ Biotechnol 10(285):44–55

    Article  Google Scholar 

  • Glekas GD, Mulhern BJ, Kroc A, Duelfer KA, Lei V, Rao CV, Ordal GW (2012) The Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanisms. J Biol ChemJ Biol Chem 287:39412–39418

    Article  CAS  Google Scholar 

  • Gohil RB, Raval VH, Panchal RR, Rajput KN (2022) Plant growth-promoting activity of bacillus sp. PG-8 isolated from fermented Panchagavya and its effect on the growth of Arachis hypogea. Front Agron 4:805454

    Article  Google Scholar 

  • Goswami M, Deka S (2020) Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: a review. Pedosphere 30:40–61

    Article  CAS  Google Scholar 

  • Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L (2021) PGPR mediated alterations in root traits: way toward sustainable crop production. Front Sustain Food Syst 4:1–28

    Article  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res IntBiomed Res Int 2016:6284547

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability, and growth of egg plant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Hanlon DW, Ordal GW (1994) Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis. J Biol ChemJ Biol Chem 269:14038–14046

    Article  CAS  Google Scholar 

  • Jiang C, Li Z-J, Tang S-Y et al (2022) Plant growth-promoting rhizobacterium AR156 - induced systemic resistance against multiple pathogens by priming of phytoalexin synthesis and secretion. Authorea

    Book  Google Scholar 

  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55(3):739–749

    Article  CAS  PubMed  Google Scholar 

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prising open the lid of the “florigen” black box. Annu Rev Plant Physiol Plant Mol Biol 54:307–328

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annual reviews of. Microbiology 63:541–556

    Article  CAS  Google Scholar 

  • Mghazli N, Bruneel O, Zouagui R, Hakkou R, Sbabou L (2022) Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front MicrobiolFront Microbiol 13:1026991

    Article  Google Scholar 

  • Nakano MM, Xia LA, Zuber P (1991) Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol 173:5487–5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Naveena ML, Gowrie U (2018) Identification of plant growth promoting rhizobacteria (PGPR) from revegetated soils of lignite mines of Neyveli, Tamilnadu. Int J Pharm Bio Sci 9(1):121–129

    Article  Google Scholar 

  • Naveena ML, Gowrie U (2019) Potential metabolites of Bacillus subtilis strain isolated from Rhizospheric soils of revegetated mine spoil dumps. Indian J Environ Prot 39(10):938–944

    Google Scholar 

  • Ortega Á, Zhulin IB, Krell T (2017) Sensory repertoire of bacterial chemoreceptors. Microbiol Mol Biol RevMicrobiol Mol Biol Rev 81:e00033–e00017

    CAS  Google Scholar 

  • Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends MicrobiolTrends Microbiol 23(5):257–266

    Article  CAS  Google Scholar 

  • Pétriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J (2017) Metabolite profiling of non-sterile rhizosphere soil. Plant JPlant J 92:147–162

    Article  Google Scholar 

  • Radhakrishnan R, Lee IJ (2016) Gibberellins producing bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol BiochemPlant Physiol Biochem 109:181–189

    Article  CAS  Google Scholar 

  • Rajkumar K, Naik MK, Amaresh YS, Chennappa G (2018) Induction of systemic resistance by Bacillus subtilis isolates against fusarium wilt of chilli. Int J Curr Microbiol App Sci 7(7):2669–2680

    Article  Google Scholar 

  • Sánchez FJ, Manzanares MA, de Andres EF, Tenorio JL, Ayerbe L (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crop Res 59:225–235

    Article  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Sheoran AS, Sheoran V, Poonia P (2008) Rehabilitation of mine degraded land by metallophytes. Min Eng J 10(3):11–16

    Google Scholar 

  • Shi HW, Wang LY, Li XX, Liu XM, Hao TY, He XJ, Chen SF (2016) Genomewide transcriptome profiling of nitrogen fixation in Paenibacillus sp. WLY78. BMC MicrobiolBMC Microbiol 16:25

    Article  Google Scholar 

  • Singh RK, Singh P, Li HB, Song QQ, Guo DJ, Solanki MK, Verma KK, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR (2020) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in saccharum spp. BMC Plant BiolBMC Plant Biol 18; 20(1):220

    Article  Google Scholar 

  • Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M (2022) Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front MicrobiolFront Microbiol 13:898979

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plants signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Britton RA, Grossman AD, Lazazzera B (2003) Identification of catabolite repression as a phys-iological regulator of biofilm formation by bacillus subtilisusing DNA microarrays. J Bacteriol 185:1951–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahir HAS, Gu Q, Wu H et al (2017) Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of bacillus volatiles. BMC Plant Biol 17:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahir HA, Gu Q, Wu H, Niu Y, Huo R, Gao X (2017a) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci RepSci Rep 7:40481

    Article  CAS  Google Scholar 

  • Tariq M, Noman M, Ahmed T, Hameed A, Manzoor N, Zafar M (2017) Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J Plant Sci Phytopathol 1:038–043

    Article  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva AM, Galyamova MR, Sedykh SE (2022) Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants 11(22):3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohidifar P, Bodhankar GA, Pei S, Cassidy CK, Walukiewicz HE, Ordal GW, Stansfeld PJ, Rao CV (2020) The unconventional cytoplasmic sensing mechanism for ethanol chemotaxis in Bacillus subtilis. MBio 11:e02177–e02120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagi S, Ahmed A (2019) Bacillus spp.: potent microfactories of bacterial IAA. PeerJ 7:e7258. https://doi.org/10.7717/peerj.7258. PMID: 31372316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Jiang H, Ding T, Xu Q, Chai W, Cheng B (2018) Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway. Mol Plant PatholMol Plant Pathol 19(7):1612–1623

    Article  CAS  Google Scholar 

  • Xing Z, Wu X, Zhao J et al (2020) Isolation and identification of induced systemic resistance determinants from Bacillus simplex sneb 545 against Heterodera glycines. Sci Rep 10:11586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousuf J, Thajudeen J, Rahiman M, Krishnankutty S, Alikunj P, A, A Abdulla MH. (2017) Nitrogen fixing potential of various heterotrophic bacillus strains from a tropical estuary and adjacent coastal regions. J Basic MicrobiolJ Basic Microbiol 57(11):922–932

    Article  CAS  Google Scholar 

  • Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D (2022) Induced systemic resistance for improving plant immunity by beneficial microbes. Plan Theory 11:386

    CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe InteractMol Plant-Microbe Interact 21:737–744. https://doi.org/10.1094/MPMI-21-6-0737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Linnet Naveena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linnet Naveena, M. (2024). Plant Growth-Promoting Traits of Bacillus and Related Genera. In: Mageshwaran, V., Singh, U.B., Saxena, A.K., Singh, H.B. (eds) Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond. Microorganisms for Sustainability, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-99-8195-3_3

Download citation

Publish with us

Policies and ethics