Skip to main content
Log in

Effect of glycosylation on the biochemical properties of β-xylosidases from Aspergillus versicolor

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aspergillus versicolor grown on xylan or xylose produces two β-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these β-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same Rf. Temperature optimum of xylan-induced and xylose-induced β-xylosidases was 45°C and 40°C, respectively, and 35°C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55°C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade, S.V., M.L.T.M. Polizeli, H.F. Terenzi, and J.A. Jorge. 2004. Effect of carbon source on the biochemical properties of β-xylosidases produced by Aspergillus versicolor. Proc. Biochem. 39, 1931–1938.

    Article  CAS  Google Scholar 

  • Bütner, R. and R. Bode. 1992. Purification and characterization of β-xylosidase activities from the yeast Arxula adeninivorans. J. Basic Microbiol. 32, 159–166.

    Article  Google Scholar 

  • Carmona, E.C., M.R. Brocheto-Braga, A.A. Pizzirani-Kleiner, and J.A. Jorge. 1998. Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol. Lett. 166, 311–315.

    Article  CAS  Google Scholar 

  • Carmona, E.C., A.A. Pizzirani-Kleiner, R.T.R. Monteiro, and J.A. Jorge. 1997. Xilanase production by Aspergillus versicolor. J. Basic Microbiol. 37, 387–394.

    Article  Google Scholar 

  • Davis, B.J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121, 404–427.

    Article  PubMed  CAS  Google Scholar 

  • Dey, N.B., P. Bounelis, T.A. Fritz, D.M. Bedewell, and R.B. Marchase. 1994. The glycosylation of phosphoglumutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 269, 27143–27148.

    PubMed  CAS  Google Scholar 

  • Dobberstein, J. and C.C. Emeis. 1991. Purification and characterization of β-xylosidase from Aureobasidium pullulans. Appl. Microbiol. Biotechnol. 35, 210–215.

    Article  CAS  Google Scholar 

  • Harrison, M.J., A.S. Nouwens, D.R. Jardine, N.E. Zachara, A.A. Gooley, and H. Nevalainen. 1998. Modified glycosylation of cellobiohydrolase I from a high cellulase producing mutant strain of Trichoderma reesei. Eur. J. Biochem. 256, 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Hui, J.P.M., P. Lanthier, T.C. White, S.G. McHugh, M. Yaguchi, R. Roy, and P. Tribault. 2001. Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry. J. Chrom. B 752, 349–368.

    Article  CAS  Google Scholar 

  • Kern, G., N. Schülke, F.X. Schmid, and R. Jaenicke. 1992. Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast. Protein Sci. 1, 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Klarskov, K., K.K. Piens, J. Stahlberg, P.B. Hoj, J.M. Van Beeumen, and M. Claeyssens. 1997. Cellobiohydrolase I from Trichoederma reesei: Identification of an active-site nucelophile and additional information on sequence including the glycosylation pattern for the core protein. Carbohydr. Res. 304, 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Kristufek, D., S. Zellinger, and C.P. Kubicek. 1995. Regulation of β-ylosidase formation by xylose in Trichoderma reesei. Appl. Microbiol. Biotechnol. 42, 713–717.

    Article  CAS  Google Scholar 

  • Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnolological aspects of xylanase. FEMS Microbiol. Rev. 23, 411–456.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lige, B., S. Ma, and R.B. Van Huystee. 2001. The effects of the site-directed removal of N-glycosylation from cationic peanut peroxidase on its function. Arch. Biochem. Biophys. 386, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Mandels, G.R. 1953. Localization of carbohydrases at surface of fungus spores by acid treatment. Exp. Cell Res. 5, 48–55.

    Article  PubMed  CAS  Google Scholar 

  • Maras, M., A. De Bruyn, J. Schraml, P. Herdewijn, M. Claeyssens, W. Fiers, and R. Contreras. 1997. Structural characterization of N-linked oligosaccharides from cellobiohydrolase secreted by filamentous fungi Trichoderma reesei Rut-C-30. Eur. J. Biochem. 245, 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Meldgaard, M. and I. Svendsen. 1994. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3−1,4)-β-glucanases secreted from yeast. Microbiology 140, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Polizeli, M.L.T.M., A.C. Rizzati, R. Monti, H.F. Terenzi, J.A. Jorge, and D.S. Amorin. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591.

    Article  PubMed  CAS  Google Scholar 

  • Poutanen, K., P. Ratto, and L. Viikari. 1987. Evaluation of different microbial xylanolytic systems. J. Biotechnol. 6, 49–60.

    Article  CAS  Google Scholar 

  • Stals, I., K. Sandra, B. Devreese, J. Van Beeumen, and M. Claeyssens. 2004a. Factors influencing glycosylation of Trichoderma reesei cellulases. II: N-glycosylation of Cel7A core protein isolated from different strains. Glycobiology 14, 725–737.

    Article  PubMed  CAS  Google Scholar 

  • Stals, I., K. Sandra, S. Geysens, R. Contreras, J. Van Beeumen, and M. Claeyssens. 2004b. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14, 713–724.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji T., K. Yamamoto, and T. Tochikura. 1990. Formation of deglycosylated α-L-fucosidase by endo-β-N-acetylglucosaminidase in Fusarium oxysporum. Appl. Environ. Microbiol. 56, 928–933.

    PubMed  CAS  Google Scholar 

  • Varki, A. 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.

    Article  PubMed  CAS  Google Scholar 

  • Venturi, L.L., M.L.T.M. Polizeli, H.F. Terenzi, R.P.M. Furriel, and J.A. Jorge. 2002. Extracellular β-D-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties. J. Basic Microbiol. 42, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, H.J.A. 1956. A convenient growth medium for Neurospora (medium N). Microbial Genet. Bull. 37, 387–394.

    Google Scholar 

  • Wong, K.K.Y., L.U.L. Tan, and J.N. Saddler. 1998. Multiplicity of β-1,4-xylanases in microorganisms: functions and applications. Microbiol. Rev. 52, 305–317.

    Google Scholar 

  • Wray, W., T. Boulikas, V.P. Wray, and R. Hancock. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Zanoelo, F.F., M.L.T.M. Polizeli, H.F. Terenzi, and J.A. Jorge. 2004. Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum. J. Ind. Microbiol. Biotechnol. 31, 170–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Atílio Jorge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somera, A.F., Pereira, M.G., Souza Guimarães, L.H. et al. Effect of glycosylation on the biochemical properties of β-xylosidases from Aspergillus versicolor . J Microbiol. 47, 270–276 (2009). https://doi.org/10.1007/s12275-008-0286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0286-9

Keywords

Navigation