Skip to main content
Log in

Carbon nanotube films with ultrahigh thermal-shock and thermal-shock-fatigue resistance characterized by ultra-fast ascending shock testing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The exploration of material failure behavior not only involves defining its limits and underlying mechanisms but also entails devising strategies for improvement and protection in extreme conditions. We’ve pioneered an advanced multi-scale, high-speed ascending thermal shock testing platform capable of inducing unprecedented heat shocks at rates surpassing 105 °C/s. Through meticulous examination of the thermal shock responses of carbon nanotube (CNT) films, we’ve achieved remarkable breakthroughs. By employing an innovative macro-scale synchronous tightening and relaxing approach, we’ve attained a critical temperature differential in CNT films that exceeds an exceptional 2500 °C—surpassing any previously reported metric for high-performance, thermal-shock-resistant materials. Notably, these samples have demonstrated exceptional resilience, retaining virtually unchanged strength even after enduring 10,000 thermal shock cycles at temperatures exceeding 1000 °C. Furthermore, our research has revealed a novel thermal shock/fatigue failure mechanism that fundamentally diverges from conventional theories centered on thermal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, M. Q.; Bai, Y. X.; Gao, R. Y.; Liu, Y. J.; Zhang, P.; Zhang, H.; Liu, L. Q.; Zhang, Z. Failure-analysis of carbon nanotubes and their extreme applications. Nano Res. 2023, 16, 12364–12383.

    Article  CAS  Google Scholar 

  2. Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

    Article  CAS  Google Scholar 

  3. Anderson, T. L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, 2017.

    Book  Google Scholar 

  4. Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

    Article  CAS  PubMed  Google Scholar 

  5. Huang, J. Y.; Chen, S.; Wang, Z. Q.; Kempa, K.; Wang, Y. M.; Jo, S. H.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Superplastic carbon nanotubes. Nature 2006, 439, 281.

    Article  CAS  PubMed  Google Scholar 

  6. Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gupta, N.; Penev, E. S.; Yakobson, B. I. Fatigue in assemblies of indefatigable carbon nanotubes. Sci. Adv. 2021, 7, eabj6996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Red. Lett. 2001, 86, 3128–3131.

    Article  CAS  Google Scholar 

  9. Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

    Article  CAS  PubMed  Google Scholar 

  10. Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. A meta-analysis of conductive and strong carbon nanotube materials. Adv. Mater. 2021, 33, 2008432.

    Article  CAS  Google Scholar 

  11. Wei, Y.; Jiang, K. L.; Liu, L.; Chen, Z.; Fan, S. S. Vacuum-breakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications. Nano Lett. 2007, 7, 3792–3797.

    Article  CAS  Google Scholar 

  12. Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

    Article  CAS  PubMed  Google Scholar 

  13. Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

    Article  CAS  PubMed  Google Scholar 

  14. Bai, Y. X.; Yue, H. J.; Zhang, R. F.; Qian, W. Z.; Zhang, Z.; Wei, F. Mechanical behavior of single and bundled defect-free carbon nanotubes. Acc. Mater. Res. 2021, 2, 998–1009.

    Article  CAS  Google Scholar 

  15. Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

    Article  Google Scholar 

  16. Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D. N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 2013, 4, 2202.

    Article  PubMed  Google Scholar 

  17. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

    Article  CAS  PubMed  Google Scholar 

  18. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.

    Article  CAS  PubMed  Google Scholar 

  19. Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, T.; Pickel, A. D.; Yao, Y. G.; Chen, Y. N.; Zeng, Y. Q.; Lacey, S. D.; Li, Y. J.; Wang, Y. L.; Dai, J. Q.; Wang, Y. B. et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3000 K. Nat. Energy 2018, 3, 148–156.

    Article  CAS  Google Scholar 

  21. Wu, X. F.; Jiang, C. P.; Song, F.; Li, J.; Shao, Y. F.; Xu, X. H.; Yan, P. Size effect of thermal shock crack patterns in ceramics and numerical predictions. J. Eur. Ceram. Soc. 2015, 35, 1263–1271.

    Article  CAS  Google Scholar 

  22. Bai, Y. L.; Kong, F. Y.; He, X. D.; Li, N.; Qi, X. X.; Zheng, Y. T.; Zhu, C. C.; Wang, R. G.; Duff, A. I. Thermal shock behavior of Ti2AlC from 200°C to 1400°C. J. Am. Ceram. Soc. 2017, 100, 4190–4198.

    Article  CAS  Google Scholar 

  23. Liao, N.; Jia, D. C.; Yang, Z. H.; Zhou, Y.; Li, Y. W. Enhanced thermal shock and oxidation resistance of Si2BC3N ceramics through MWCNTs incorporation. J. Adv. Ceram. 2018, 7, 276–288.

    Article  CAS  Google Scholar 

  24. Liao, N.; Jia, D. C.; Yang, Z. H.; Zhou, Y. Enhanced mechanical properties and thermal shock resistance of Si2BC3N ceramics with SiC coated MWCNTs. J. Adv. Ceram. 2019, 8, 121–132.

    Article  CAS  Google Scholar 

  25. He, R. J.; Qu, Z. L.; Liang, D. Rapid heating thermal shock study of ultra high temperature ceramics using an in situ testing method. J. Adv. Ceram. 2017, 6, 279–287.

    Article  CAS  Google Scholar 

  26. Zhang, X. H.; Hu, P.; Han, J. C.; Meng, S. H. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Compos. Sci. Technol. 2008, 68, 1718–1726.

    Article  CAS  Google Scholar 

  27. Monteverde, F.; Savino, R.; De Stefano Fumo, M.; Di Maso, A. Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions. J. Eur. Ceram. Soc. 2010, 30, 2313–2321.

    Article  CAS  Google Scholar 

  28. Zhang, X. H.; Han, J. C.; He, X. D.; Yan, C.; Wang, B. L.; Xu, Q. Ablation-resistance of combustion synthesized TiB2-Cu cermet. J. Am. Ceram. Soc. 2005, 88, 89–94.

    Article  CAS  Google Scholar 

  29. Schneider, G. A.; Petzow, G. Thermal shock testing of ceramics-a new testing method. J. Am. Ceram. Soc. 1991, 74, 98–102.

    Article  CAS  Google Scholar 

  30. Neuman, E. W.; Hilmas, G. E.; Fahrenholtz, W. G. Mechanical behavior of zirconium diboride-silicon carbide-boron carbide ceramics up to 2200 °C. J. Eur. Ceram. Soc. 2015, 35, 463–476.

    Article  CAS  Google Scholar 

  31. Li, Z. H.; Wang, Y. J.; Ma, M. D.; Ma, H. C.; Hu, W. T.; Zhang, X.; Zhuge, Z. W.; Zhang, S. S.; Luo, K.; Gao, Y. F. et al. Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene. Nat. Mater. 2023, 22, 42–49.

    Article  CAS  PubMed  Google Scholar 

  32. Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

    Article  CAS  Google Scholar 

  33. Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.

    Article  CAS  PubMed  Google Scholar 

  34. Hasselman, D. P. H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc. 1969, 52, 600–604.

    Article  CAS  Google Scholar 

  35. Schneider, G. A. Thermal shock criteria for ceramics. Ceram. Int. 1991, 17, 325–333.

    Article  CAS  Google Scholar 

  36. Liu, C. B.; Cai, C. Y.; Xie, J. W.; Guo, W. M.; Qin, H.; Gao, P. Z.; Xiao, H. N. Effect of surface brittle-to-ductile transition on high-temperature thermal shock resistance of Al2O3 ceramics. Ceram. Int. 2022, 48, 20627–20638.

    Article  CAS  Google Scholar 

  37. Kingery, W. D. Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 1955, 38, 3–15.

    Article  Google Scholar 

  38. Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.

    Article  CAS  PubMed  Google Scholar 

  39. Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High- strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X. H.; Wang, Z.; Hu, P.; Han, W. B.; Hong, C. Q. Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers. Scr. Mater. 2009, 61, 809–812.

    Article  CAS  Google Scholar 

  41. Peng, X.; Qin, Y.; Zhang, X. A constitutive model for the metals subjected to thermomechanical loading with fast heating during heating-assisted forming. J. Mater. Process. Technol. 2005, 167, 244–250.

    Article  CAS  Google Scholar 

  42. Yue, X.; Peng, X. H.; Wei, Z.; Chen, X. S.; Fu, T. Effect of heating rate on the strength of ZrB2-SiC composite subjected to cyclic thermal shock. Ceram. Int. 2019, 45, 15400–15405.

    Article  CAS  Google Scholar 

  43. Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553.

    Article  CAS  PubMed  Google Scholar 

  44. Tong, Y. G.; Zhu, W. T.; Bai, S. X.; Hu, Y. L.; Xie, X. Q.; Li, Y. Thermal shock resistance of continuous carbon fiber reinforced ZrC based ultra-high temperature ceramic composites prepared via Zr-Si alloyed melt infiltration. Mater. Sci. Eng.: A 2018, 735, 166–172.

    Article  CAS  Google Scholar 

  45. Gutiérrez, H. R.; Kim, U. J.; Kim, J. P.; Eklund, P. C. Thermal conversion of bundled carbon nanotubes into graphitic ribbons. Nano Lett. 2005, 5, 2195–2201.

    Article  PubMed  Google Scholar 

  46. Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Liu, L. Q.; Zhang, Z. Dynamic electrical failure of carbon nanotube ribbons. Carbon 2023, 202, 425–431.

    Article  CAS  Google Scholar 

  47. Kuznetsov, V. L.; Elumeeva, K. V.; Ishchenko, A. V.; Beylina, N. Y.; Stepashkin, A. A.; Moseenkov, S. I.; Plyasova, L. M.; Molina, I. Y.; Romanenko, A. I.; Anikeeva, O. B. et al. Multi- walled carbon nanotubes with ppm level of impurities. Phys. Status Solidi (B) 2010, 247, 2695–2699.

    Article  CAS  Google Scholar 

  48. Pierson, H. O. Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications; William Andrew: Amsterdam, 2012.

    Google Scholar 

  49. Li, J. L.; Wang, L. J.; He, T.; Jiang, W. Surface graphitization and mechanical properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 2007, 45, 2636–2642.

    Article  CAS  Google Scholar 

  50. Chen, P.; Wu, X.; Sun, X.; Lin, J.; Ji, W.; Tan, K. L. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 1999, 82, 2548–2551.

    Article  CAS  Google Scholar 

  51. Palaci, I.; Fedrigo, S.; Brune, H.; Klinke, C.; Chen, M.; Riedo, E. Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 2005, 94, 175502.

    Article  CAS  PubMed  Google Scholar 

  52. Carlsson, L. A.; Lindstrom, T. A shear-lag approach to the tensile strength of paper. Compos. Sci. Technol. 2005, 65, 183–189.

    Article  Google Scholar 

  53. Guo, J. R.; Fu, S. B.; Deng, Y. P.; Xu, X.; Laima, S. J.; Liu, D. Z.; Zhang, P. Y.; Zhou, J.; Zhao, H.; Yu, H. X. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022, 606, 909–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu, Q. G.; Wang, L.; Tian, X. F.; Shen, Q. L. Effects of thermal shock on the microstructures, mechanical and thermophysical properties of SiCnws-C/C composites. Compos. Part B: Eng. 2019, 164, 620–628.

    Article  CAS  Google Scholar 

  55. Yan, N. N.; Fu, Q. G.; Zhang, S.; Zhang, J. P.; Sun, J.; Shen, Q. L. Effects of thermal shock on the microstructure, mechanical and thermophysical properties of ZrC-C composites. Compos. Part A: Appl. Sci. Manuf. 2021, 151, 106642.

    Article  CAS  Google Scholar 

  56. Yin, X. W.; Cheng, L. F.; Zhang, L. T.; Xu, Y. D. Thermal shock behavior of 3-dimensional C/SiC composite. Carbon 2002, 40, 905–910.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Shoushan Fan, Prof. Kaili Jiang and Prof. Liang Liu from Tsinghua University for their kind material support and helpful discussions to this work. This work was jointly supported by the National Key Basic Research Program of China (No. 2022YFA1205400), the National Natural Science Foundation of China (Nos. 11832010, 11890682, and 21721002), the Chinese Postdoctoral Science Foundation (Nos. E1I41IR1 and E2911IR1), Special Research Assistant Program of Chinese Academy of Sciences (No. E37551R1), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36010200), and the Austrian-Chinese Cooperative Research and Development Projects (No. GJHZ2043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxiang Bai, Hui Zhang or Zhong Zhang.

Electronic supplementary material

12274_2024_6684_MOESM1_ESM.pdf

Carbon nanotube films with ultrahigh thermal-shock and thermal-shock-fatigue resistance characterized by ultra-fast ascending shock testing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wang, S., Bai, Y. et al. Carbon nanotube films with ultrahigh thermal-shock and thermal-shock-fatigue resistance characterized by ultra-fast ascending shock testing. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6684-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6684-4

Keywords

Navigation