Skip to main content
Log in

Stable hydrogen-bonded organic frameworks and their photo- and electro-responses

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrogen-bonded organic frameworks (HOFs) are a recent class of porous materials that have garnered considerable research interest owing to their distinctive characteristics. HOFs can be constructed through judicious selection of H-bonding motifs, which are further enforced by other weak intermolecular interactions such as π–π stacking, van der Waals forces, and framework interpenetration. Taking advantage of these interactions, we can expand the functional field of HOFs by introducing active molecules. Recently, researchers have made substantial advancements in using HOFs for chemical sensing, catalysis, proton conduction, biological applications, and others. The low bonding energy of H-bonds allows for precise control over the concentration of ligands in solvents, forming diverse HOF structures. These varied structures offer significant advantages for producing HOFs with photo-responsive and electro-responsive properties. However, the presence of H-bonds in HOFs results in their inherent lower stability compared to metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) formed via coordination and covalent bonds, respectively. As a result, the pursuit of stable and innovative HOF materials with novel functional sites remains an ongoing challenge. This review provides an overview of recent research progress in the development of new strategies for stable HOF synthesis and applications of HOFs with stimuli-responsive properties. We first classified all synthetic methods reported to date and discussed the stable HOFs synthesized, as well as their unique properties and applications. In addition, we summarized the applications of HOFs utilizing their synergistic responses to external stimuli, including photo, electrical, pressure, and chemical stimuli. We systematically reviewed stable HOF synthesis and applications, which may lead to a deeper understanding of the structure–activity relationship for these materials and guide future HOF design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, C. X.; Liu, Y.; Rinker, S.; Yan, H. DNA tile based self-assembly: Building complex nanoarchitectures. Chemphyschem 2006, 7, 1641–1647.

    Article  CAS  PubMed  Google Scholar 

  2. Pfeifer, W.; Sacca, B. From nano to macro through hierarchical self-assembly: The DNA paradigm. Chembiochem 2016, 17, 1063–1080.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y. Z.; Tu, J.; Wang, D. Q.; Zhu, H. T.; Maity, S. K.; Qu, X. M.; Bogaert, B.; Pei, H.; Zhang, H. B. Programmable and multifunctional DNA-based materials for biomedical applications. Adv. Mater. 2018, 30, 1703658.

    Article  Google Scholar 

  4. Hu, Y. Q.; Wang, Y.; Yan, J. H.; Wen, N. C.; Xiong, H. J.; Cai, S. D.; He, Q. Y.; Peng, D. M.; Liu, Z. B.; Liu, Y. F. Dynamic DNA assemblies in biomedical applications. Adv. Sci. 2020, 7, 2000557.

    Article  CAS  Google Scholar 

  5. Liu, B. T.; Gong, S. H.; Jiang, X. T.; Zhang, Y.; Wang, R.; Chen, Z. J.; Zhang, S.; Kirlikovali, K. O.; Liu, T. F.; Farha, O. K. et al. A solution processible single-crystal porous organic polymer. Nat. Synth. 2023, 2, 873–879.

    Article  Google Scholar 

  6. Abrahams, B. F.; Hoskins, B. F.; Liu, J. P.; Robson, R. The archetype for a new class of simple extended 3D honeycomb frameworks. The synthesis and X-ray crystal structures of Cd(CN)5/3(OH)ω1/3(C6H12N4), Cd(CN)r1/3 (C6H12N4), and Cd(CN)22/3H2O·tBuOH (C6H12N4 = Hexamethylenetetramine) revealing two topologically equivalent but geometrically different frameworks. J. Am. Chem. Soc. 1991, 113, 3045–3051.

    Article  CAS  Google Scholar 

  7. Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.

    Article  CAS  PubMed  Google Scholar 

  8. Li, H. L.; Thomas, M.; Groy, T. L.; Yaghi, O. M. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC=1,4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 8571–8572.

    Article  CAS  Google Scholar 

  9. Kim, J.; Chen, B. L.; Reineke, T. M.; Li, H. L.; Eddaoudi, M.; Moler, D. B.; O’Keeffe, M.; Yaghi, O. M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247.

    Article  CAS  PubMed  Google Scholar 

  10. Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4xH2O}n (M = Co, Ni, Zn). Angew. Chem., Int. Ed. 1997, 36, 1725–1727.

    Article  CAS  Google Scholar 

  11. Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

    Article  CAS  Google Scholar 

  12. O’Keeffe, M. Design of MOFs and intellectual content in reticular chemistry: A personal view. Chem. Soc. Rev. 2009, 38, 1215–1217.

    Article  PubMed  Google Scholar 

  13. O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789.

    Article  PubMed  Google Scholar 

  14. Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176–182.

    Article  CAS  PubMed  Google Scholar 

  15. Hoskins, B. F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu1[4,4′,4″,4‴-tetracyanotetraphenylmethane]BF4·xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554.

    Article  CAS  Google Scholar 

  16. Brunet, P.; Demers, E.; Maris, T.; Enright, G. D.; Wuest, J. D. Designing permeable molecular crystals that react with external agents to give crystalline products. Angew. Chem., Int. Ed. 2003, 42, 5303–5306.

    Article  CAS  Google Scholar 

  17. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  PubMed  Google Scholar 

  18. Kolotuchin, S. V.; Fenlon, E. E.; Wilson, S. R.; Loweth, C. J.; Zimmerman, S. C. Self-assembly of 1,3,5-benzenetricarboxylic acids (trimesic acids) and several analogues in the solid state. Angew. Chem., Int. Ed. 1996, 34, 2654–2657.

    Article  Google Scholar 

  19. Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.

    Article  CAS  PubMed  Google Scholar 

  20. Little, M. A.; Cooper, A. I. The chemistry of porous organic molecular materials. Adv. Funct. Mater. 2020, 30, 1909842.

    Article  CAS  Google Scholar 

  21. Malek, N.; Maris, T.; Perron, M. È.; Wuest, J. D. Molecular tectonics: Porous cleavable networks constructed by dipole-directed stacking of hydrogen-bonded sheets. Angew. Chem., Int. Ed. 2005, 44, 4021–4025.

    Article  CAS  Google Scholar 

  22. Wuest, J. D. Atoms and the void: Modular construction of ordered porous solids. Nat. Commun. 2020, 11, 4652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

    Article  CAS  PubMed  Google Scholar 

  24. He, Y. B.; Xiang, S. C.; Chen, B. L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 2011, 133, 14570–14573.

    Article  CAS  PubMed  Google Scholar 

  25. Yin, Q.; Zhao, P.; Sa, R. J.; Chen, G. C.; Lu, J.; Liu, T. F.; Cao, R. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 7691–7696.

    Article  CAS  Google Scholar 

  26. Bao, Z. B.; Xie, D. Y.; Chang, G. G.; Wu, H.; Li, L. Y.; Zhou, W.; Wang, H. L.; Zhang, Z. G.; Xing, H. B.; Yang, Q. W. et al. Fine tuning and specific binding sites with a porous hydrogen-bonded metal-complex framework for gas selective separations. J. Am. Chem. Soc. 2018, 140, 4596–4603.

    Article  CAS  PubMed  Google Scholar 

  27. Hu, F.; Liu, C. P.; Wu, M. Y.; Pang, J. D.; Jiang, F. L.; Yuan, D. Q.; Hong, M. C. An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity. Angew. Chem., Int. Ed. 2017, 56, 2101–2104.

    Article  CAS  Google Scholar 

  28. Nandi, S.; Chakraborty, D.; Vaidhyanathan, R. A permanently porous single molecule H-bonded organic framework for selective CO2 capture. Chem. Commun. 2016, 52, 7249–7252.

    Article  CAS  Google Scholar 

  29. Wang, B.; Lv, X. L.; Lv, J.; Ma, L.; Lin, R. B.; Cui, H.; Zhang, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chem. Commun. 2019, 56, 66–69.

    Article  Google Scholar 

  30. Wang, L.; Yang, L. X.; Gong, L. L.; Krishna, R.; Gao, Z.; Tao, Y.; Yin, W. H.; Xu, Z. Z.; Luo, F. Constructing redox-active microporous hydrogen-bonded organic framework by imide-functionalization: Photochromism, electrochromism, and selective adsorption of C2H2 over CO2. Chem. Eng. J. 2020, 383, 123117.

    Article  CAS  Google Scholar 

  31. Xi, X. J.; Li, Y.; Lang, F. F.; Xu, L.; Pang, J. D.; Bu, X. H. Robust porous hydrogen-bonded organic frameworks: Synthesis and applications in gas adsorption and separation. Giant 2023, 16, 100181.

    Article  CAS  Google Scholar 

  32. Yin, Q.; Li, Y. L.; Li, L.; Lü, J.; Liu, T. F.; Cao, R. Novel hierarchical meso-microporous hydrogen-bonded organic framework for selective separation of acetylene and ethylene versus methane. ACS Appl. Mater. Interfaces 2019, 11, 17823–17827.

    Article  CAS  PubMed  Google Scholar 

  33. Yin, Q.; Lü, J.; Li, H. F.; Liu, T. F.; Cao, R. Robust microporous porphyrin-based hydrogen-bonded organic framework for highly selective separation of C2 hydrocarbons versus methane. Cryst. Growth Des. 2019, 19, 4157–4161.

    Article  CAS  Google Scholar 

  34. Zentner, C. A.; Lai, H. W. H.; Greenfield, J. T.; Wiscons, R. A.; Zeller, M.; Campana, C. F.; Talu, O.; FitzGerald, S. A.; Rowsell, J. L. High surface area and Z′ in a thermally stable 8-fold polycatenated hydrogen-bonded framework. Chem. Commun. 2015, 51, 11642–11645.

    Article  CAS  Google Scholar 

  35. Zhang, X.; Li, L. B.; Wang, J. X.; Wen, H. M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z. N.; Li, B.; Qian, G. D. et al. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2020, 142, 633–640.

    Article  CAS  PubMed  Google Scholar 

  36. Li, P.; He, Y. B.; Zhao, Y. F.; Weng, L. H.; Wang, H. L.; Krishna, R.; Wu, H.; Zhou, W.; O’Keeffe, M.; Han, Y. et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angew. Chem., Int. Ed. 2015, 54, 574–577.

    Article  CAS  Google Scholar 

  37. Li, P.; He, Y. B.; Arman, H. D.; Krishna, R.; Wang, H. L.; Weng, L. H.; Chen, B. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6. Chem. Commun. 2014, 50, 13081–13084.

    Article  CAS  Google Scholar 

  38. Wang, H. L.; Li, B.; Wu, H.; Hu, T. L.; Yao, Z. Z.; Zhou, W.; Xiang, S. C.; Chen, B. L. A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 2015, 137, 9963–9970.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, W.; Yang, F.; Hu, T. L.; King, S. C.; Wang, H. L.; Wu, H.; Zhou, W.; Li, J. R.; Arman, H. D.; Chen, B. L. Microporous diaminotriazine-decorated porphyrin-based hydrogen-bonded organic framework: Permanent porosity and proton conduction. Cryst. Growth Des. 2016, 16, 5831–5835.

    Article  CAS  Google Scholar 

  40. Yang, W.; Li, B.; Wang, H. L.; Alduhaish, O.; Alfooty, K.; Zayed, M. A.; Li, P.; Arman, H. D.; Chen, B. L. A microporous porphyrin-based hydrogen-bonded organic framework for gas separation. Cryst. Growth Des. 2015, 15, 2000–2004.

    Article  CAS  Google Scholar 

  41. Wang, H. L.; Wu, H.; Kan, J. L.; Chang, G. G.; Yao, Z. Z.; Li, B.; Zhou, W.; Xiang, S. C.; Zhao, J. C. G.; Chen, B. L. A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. J. Mater. Chem. A 2017, 5, 8292–8296.

    Article  CAS  Google Scholar 

  42. Wang, H. L.; Bao, Z. B.; Wu, H.; Lin, R. B.; Zhou, W.; Hu, T. L.; Li, B.; Zhao, J. C. G.; Chen, B. L. Two solvent-induced porous hydrogen-bonded organic frameworks: Solvent effects on structures and functionalities. Chem. Commun. 2017, 53, 11150–11153.

    Article  CAS  Google Scholar 

  43. Feng, S.; Shang, Y. X.; Wang, Z. K.; Kang, Z. X.; Wang, R. M.; Jiang, J. Z.; Fan, L. L.; Fan, W. D.; Liu, Z. N.; Kong, G. D. et al. Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem., Int. Ed. 2020, 59, 3840–3845.

    Article  CAS  Google Scholar 

  44. Chen, T. H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y. C.; Chen, Y. S.; Daugulis, O.; Jacobson, A. J.; Miljanić, O. S. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 2014, 5, 5131.

    Article  CAS  PubMed  Google Scholar 

  45. Lü, J.; Perez-Krap, C.; Suyetin, M.; Alsmail, N. H.; Yan, Y.; Yang, S. H.; Lewis, W.; Bichoutskaia, E.; Tang, C. C.; Blake, A. J. et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity. J. Am. Chem. Soc. 2014, 136, 12828–12831.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liao, M. S.; Scheiner, S. Electronic structure and bonding in metal porphyrins, metal = Fe, Co, Ni, Cu, Zn. J. Chem. Phys. 2002, 117, 205–219.

    Article  CAS  Google Scholar 

  47. Chen, X.; Takahashi, K.; Kokado, K.; Nakamura, T.; Hisaki, I. A proton conductive hydrogen-bonded framework incorporating 18-crown-6-ether and dicarboxy-o-terphenyl moieties. Mater. Adv. 2021, 2, 5639–5644.

    Article  CAS  Google Scholar 

  48. Delmas, L. C.; Horton, P. N.; White, A. J. P.; Coles, S. J.; Lickiss, P. D.; Davies, R. P. Siloxane-based linkers in the construction of hydrogen bonded assemblies and porous 3D MOFs. Chem. Commun. 2017, 53, 12524–12527.

    Article  CAS  Google Scholar 

  49. Guo, G. M.; Wang, D. B.; Zheng, X. H.; Bi, X. W.; Liu, S. P.; Sun, L. S.; Zhao, Y. J. Construction of tetraphenylethylene-based fluorescent hydrogen-bonded organic frameworks for detection of explosives. Dyes Pigments. 2022, 197, 109881.

    Article  CAS  Google Scholar 

  50. Hisaki, I.; Suzuki, Y.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Docking strategy to construct thermostable, single-crystalline, hydrogen-bonded organic framework with high surface area. Angew. Chem., Int. Ed. 2018, 57, 12650–12655.

    Article  CAS  Google Scholar 

  51. Inokuchi, D.; Hirao, Y.; Takahashi, K.; Matsumoto, K.; Mori, H.; Kubo, T. Dynamics of water molecules in a 3-fold interpenetrated hydrogen-bonded organic framework based on tetrakis(4-pyridyl)methane. J. Phys. Chem. C 2019, 123, 6599–6606.

    Article  CAS  Google Scholar 

  52. Khanpour, M.; Deng, W. Z.; Fang, Z. B.; Li, Y. L.; Yin, Q.; Zhang, A. A.; Rouhani, F.; Morsali, A.; Liu, T. F. Radiochromic hydrogen-bonded organic frameworks for X-ray detection. Chem.—Eur. J. 2021, 27, 10957–10965.

    Article  CAS  PubMed  Google Scholar 

  53. Li, P. H.; Li, P.; Ryder, M. R.; Liu, Z. C.; Stern, C. L.; Farha, O. K.; Stoddart, J. F. Interpenetration isomerism in triptycene-based hydrogen-bonded organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 1664–1669.

    Article  CAS  Google Scholar 

  54. Li, Y. L.; Alexandrov, E. V.; Yin, Q.; Li, L.; Fang, Z. B.; Yuan, W. B.; Proserpio, D. M.; Liu, T. F. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 2020, 142, 7218–7224.

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki, Y.; Tohnai, N.; Hisaki, I. Triaxially woven hydrogen-bonded chicken wires of a tetrakis(carboxybiphenyl)ethene. Chem.—Eur. J. 2020, 26, 17056–17062.

    Article  CAS  PubMed  Google Scholar 

  56. Tang, Y. C.; Zhang, C. Y.; Fan, L. L.; Shang, Y. X.; Feng, Y.; Pang, J.; Cui, X. L.; Kong, G. D.; Wang, R. M.; Kang, Z. X. et al. Regulating the orientation of hydrogen-bonded organic framework membranes based on substrate modification. Cryst. Growth Des. 2021, 21, 5292–5299.

    Article  CAS  Google Scholar 

  57. Wang, J. X.; Gu, X. W.; Lin, Y. X.; Li, B.; Qian, G. D. A novel hydrogen-bonded organic framework with highly permanent porosity for boosting ethane/ethylene separation. ACS Mater. Lett. 2021, 3, 497–503.

    Article  CAS  Google Scholar 

  58. Yang, W.; Wang, J. W.; Wang, H. L.; Bao, Z. B.; Zhao, J. C. G.; Chen, B. L. Highly interpenetrated robust microporous hydrogen-bonded organic framework for gas separation. Cryst. Growth Des. 2017, 17, 6132–6137.

    Article  CAS  Google Scholar 

  59. Yang, W.; Zhou, W.; Chen, B. L. A flexible microporous hydrogen-bonded organic framework. Cryst. Growth Des. 2019, 19, 5184–5188.

    Article  CAS  Google Scholar 

  60. Yang, Y.; Li, L. B.; Lin, R. B.; Ye, Y. X.; Yao, Z. Z.; Yang, L.; Xiang, F. H.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 2021, 13, 933–939.

    Article  CAS  PubMed  Google Scholar 

  61. Yoon, T. U.; Baek, S. B.; Kim, D.; Kim, E. J.; Lee, W. G.; Singh, B. K.; Lah, M. S.; Bae, Y. S.; Kim, K. S. Efficient separation of C2 hydrocarbons in a permanently porous hydrogen-bonded organic framework. Chem. Commun. 2018, 54, 9360–9363.

    Article  CAS  Google Scholar 

  62. Zhang, X.; Wang, J. X.; Li, L. B.; Pei, J. Y.; Krishna, R.; Wu, H.; Zhou, W.; Qian, G. D.; Chen, B. L.; Li, B. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation. Angew. Chem., Int. Ed. 2021, 60, 10304–10310.

    Article  CAS  Google Scholar 

  63. Mühlbauer, E.; Klinkebiel, A.; Beyer, O.; Auras, F.; Wuttke, S.; Lüning, U.; Bein, T. Functionalized PCN-6 metal-organic frameworks. Microporous Mesoporous Mater. 2015, 216, 51–55.

    Article  Google Scholar 

  64. Lin, Y. X.; Jiang, X. F.; Kim, S. T.; Alahakoon, S. B.; Hou, X. S.; Zhang, Z. Y.; Thompson, C. M.; Smaldone, R. A.; Ke, C. F. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J. Am. Chem. Soc. 2017, 139, 7172–7175.

    Article  CAS  PubMed  Google Scholar 

  65. Karmakar, A.; Illathvalappil, R.; Anothumakkool, B.; Sen, A.; Samanta, P.; Desai, A. V.; Kurungot, S.; Ghosh, S. K. Hydrogen-bonded organic frameworks (HOFs): A new class of porous crystalline proton-conducting materials. Angew. Chem., Int. Ed. 2016, 55, 10667–10671.

    Article  CAS  Google Scholar 

  66. Qin, W. K.; Si, D. H.; Yin, Q.; Gao, X. Y.; Huang, Q. Q.; Feng, Y. N.; Xie, L.; Zhang, S.; Huang, X. S.; Liu, T. F. et al. Reticular synthesis of hydrogen-bonded organic frameworks and their derivatives via mechanochemistry. Angew. Chem., Int. Ed. 2022, 61, e202202089.

    Article  CAS  Google Scholar 

  67. Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co-Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

    Article  CAS  Google Scholar 

  68. Samanta, J.; Dorn, R. W.; Zhang, W. L.; Jiang, X. F.; Zhang, M. S.; Staples, R. J.; Rossini, A. J.; Ke, C. F. An ultra-dynamic anion-cluster-based organic framework. Chem 2022, 8, 253–267.

    Article  CAS  Google Scholar 

  69. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

    Article  CAS  Google Scholar 

  70. Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

    Article  CAS  Google Scholar 

  71. Chen, E. X.; Qiu, M.; Zhang, Y. F.; Zhu, Y. S.; Liu, L. Y.; Sun, Y. Y.; Bu, X. H.; Zhang, J.; Lin, Q. P. Acid and base resistant zirconium polyphenolate-metalloporphyrin scaffolds for efficient CO2 photoreduction. Adv. Mater. 2018, 30, 1704388.

    Article  Google Scholar 

  72. Fang, Z. B.; Liu, T. T.; Liu, J. X.; Jin, S. Y.; Wu, X. P.; Gong, X. Q.; Wang, K. C.; Yin, Q.; Liu, T. F.; Cao, R. et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 12515–12523.

    Article  CAS  PubMed  Google Scholar 

  73. Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem., Int. Ed. 2012, 51, 7440–7444.

    Article  CAS  Google Scholar 

  74. Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

    Article  CAS  Google Scholar 

  75. Sun, D. R.; Fu, Y. H.; Liu, W. J.; Ye, L.; Wang, D. K.; Yang, L.; Fu, X. Z.; Li, Z. H. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: Towards a better understanding of photocatalysis on metal-organic frameworks. Chem.—Eur. J. 2013, 19, 14279–14285.

    Article  CAS  PubMed  Google Scholar 

  76. Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

    Article  CAS  Google Scholar 

  78. Yin, Q.; Alexandrov, E. V.; Si, D. H.; Huang, Q. Q.; Fang, Z. B.; Zhang, Y.; Zhang, A. A.; Qin, W. K.; Li, Y. L.; Liu, T. F. et al. Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202115854.

    Article  CAS  Google Scholar 

  79. Zhang, A. A.; Li, Y. L.; Fang, Z. B.; Xie, L.; Cao, R.; Liu, Y. Y.; Liu, T. F. Facile preparation of hydrogen-bonded organic framework/Cu2O heterostructure films via electrophoretic deposition for efficient CO2 photoeeduciion. ACS Appl. Mater. Interfaces 2022, 14, 21050–21058.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, A. A.; Si, D. H.; Huang, H. B.; Xie, L.; Fang, Z. B.; Liu, T. F.; Cao, R. Partial metalation of porphyrin moieties in hydrogen-bonded organic frameworks provides enhanced CO2 photoreduction activity. Angew. Chem., Int. Ed. 2022, 61, e202203955.

    Article  CAS  Google Scholar 

  81. Li, T.; Liu, B. T.; Fang, Z. B.; Yin, Q.; Wang, R.; Liu, T. F. Integrating active C3N4 moieties in hydrogen-bonded organic frameworks for efficient photocatalysis. J. Mater. Chem. A 2021, 9, 4687–4691.

    Article  CAS  Google Scholar 

  82. Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.

    Article  Google Scholar 

  83. Wang, H.; Liu, W. X.; He, X.; Zhang, P.; Zhang, X. D.; Xie, Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 2020, 142, 14007–14022.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, Q. X.; Guo, Y.; Zhu, Y. F. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nat. Catal. 2023, 6, 574–584.

    Article  CAS  Google Scholar 

  85. Cai, J. Q.; Liu, X. M.; Gao, Z. J.; Li, L. L.; Wang, H. Chlorophylls derivatives: Photophysical properties, assemblies, nanostructures and biomedical applications. Mater. Today 2021, 45, 77–92.

    Article  CAS  Google Scholar 

  86. Kwon, N.; Kim, H.; Li, X. S.; Yoon, J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem. Sci. 2021, 12, 7248–7268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, X. S.; Bai, H. T.; Yang, Y. C.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 2019, 31, 1805092.

    Article  Google Scholar 

  88. Li, Z. L.; Li, S. K.; Guo, Y. H.; Yuan, C. Q.; Yan, X. H.; Schanze, K. S. Metal-free nanoassemblies of water-soluble photosensitizer and adenosine triphosphate for efficient and precise photodynamic cancer therapy. ACS Nano. 2021, 15, 4979–4988.

    Article  CAS  PubMed  Google Scholar 

  89. Xie, B. R.; Li, C. X.; Yu, Y.; Zeng, J. Y.; Zhang, M. K.; Wang, X. S.; Zeng, X.; Zhang, X. Z. A singlet oxygen reservoir based on poly-pyridone and porphyrin nanoscale metal-organic framework for cancer therapy. CCS Chem. 2021, 3, 1187–1202.

    Article  CAS  Google Scholar 

  90. Yang, M. Y.; Li, X. S.; Yoon, J. Activatable supramolecular photosensitizers: Advanced design strategies. Mater. Chem. Front. 2021, 5, 1683–1693.

    Article  CAS  Google Scholar 

  91. Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927.

    Article  CAS  PubMed  Google Scholar 

  92. Liu, B. T.; Pan, X. H.; Nie, D. Y.; Hu, X. J.; Liu, E. P.; Liu, T. F. Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 2020, 32, 2005912.

    Article  CAS  Google Scholar 

  93. Wang, Y.; Cao, R.; Wang, C.; Song, X. Y.; Wang, R. N.; Liu, J. C.; Zhang, M. M.; Huang, J. Y.; You, T. T.; Zhang, Y. H. et al. In situ embedding hydrogen-bonded organic frameworks nanocrystals in electrospinning nanofibers for ultrastable broad-spectrum antibacterial activity. Adv. Funct. Mater. 2023, 33, 2214388.

    Article  CAS  Google Scholar 

  94. Liu, B. T.; Pan, X. H.; Zhang, D. Y.; Wang, R.; Chen, J. Y.; Fang, H. R.; Liu, T. F. Construction of function-oriented core–shell nanostructures in hydrogen-bonded organic frameworks for near-infrared-responsive bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 25701–25707.

    Article  CAS  Google Scholar 

  95. Lee, S. K.; Zu, Y. B.; Herrmann, A.; Geerts, Y.; Müllen, K.; Bard, A. J. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J. Am. Chem. Soc. 1999, 121, 3513–3520.

    Article  CAS  Google Scholar 

  96. Yang, Y. C.; He, P.; Wang, Y. X.; Bai, H. T.; Wang, S.; Xu, J. F.; Zhang, X. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew. Chem., Int. Ed. 2017, 56, 16239–16242.

    Article  CAS  Google Scholar 

  97. Zhang, A. D.; Jiang, W.; Wang, Z. H. Fulvalene-embedded perylene diimide and its stable radical anion. Angew. Chem., Int. Ed. 2020, 59, 752–757.

    Article  CAS  Google Scholar 

  98. Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem., Int. Ed. 2011, 50, 441–444.

    Article  CAS  Google Scholar 

  99. Zhou, B.; Yan, D. P. Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-assisted forster resonance energy transfer. Adv. Funct. Mater. 2018, 29, 1807599.

    Article  Google Scholar 

  100. Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano. 2016, 10, 11000–11011.

    Article  CAS  PubMed  Google Scholar 

  101. Liang, W. B.; Carraro, F.; Solomon, M. B.; Bell, S. G.; Amenitsch, H.; Sumby, C. J.; White, N. G.; Falcaro, P.; Doonan, C. J. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2019, 141, 14298–14305.

    Article  CAS  PubMed  Google Scholar 

  102. Yu, D. Q.; Zhang, H. C.; Liu, Z. Q.; Liu, C.; Du, X. B.; Ren, J. S.; Qu, X. G. Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem., Int. Ed. 2022, 61, e202201485.

    Article  CAS  Google Scholar 

  103. Björn, L. O. Photoenzymes and related topics: An update. Photochem. Photobiol. 2018, 94, 459–465.

    Article  PubMed  Google Scholar 

  104. Li, W. P.; Shi, J. F.; Chen, Y.; Liu, X. Y.; Meng, X. X.; Guo, Z. Y.; Li, S. H.; Zhang, B. Y.; Jiang, Z. Y. Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization. Chem. Eng. J. 2023, 468, 143609.

    Article  CAS  Google Scholar 

  105. Tong, L. J.; Lin, Y. H.; Kou, X. X.; Shen, Y. J.; Shen, Y.; Huang, S. M.; Zhu, F.; Chen, G. S.; Ouyang, G. F. Pore-environment-dependent photoresponsive oxidase-like activity in hydrogen-bonded organic frameworks. Angew. Chem., Int. Ed. 2023, 62, e202218661.

    Article  CAS  Google Scholar 

  106. He, Z.; Li, Y. Q.; Wu, H.; Yang, Y. H.; Chen, Y. L.; Zhu, J. K.; Li, Q. N.; Jiang, G. H. Novel stimuli-responsive spiropyran-based switch@HOFs materials enable dynamic anticounterfeiting. ACS Appl. Mater. Interfaces 2022, 14, 48133–48142.

    Article  CAS  PubMed  Google Scholar 

  107. Liu, B. T.; Liu, E. P.; Sa, R. J.; Liu, T. F. Crystalline hydrogen-bonded organic chains achieving ultralong phosphorescence via triplet-triplet energy transfer. Adv. Opt. Mater. 2020, 8, 2000281.

    Article  CAS  Google Scholar 

  108. Paulsen, B. D.; Tybrandt, K.; Stavrinidou, E.; Rivnay, J. Organic mixed ionic-electronic conductors. Nat. Mater. 2020, 19, 13–26.

    Article  CAS  PubMed  Google Scholar 

  109. Chen, S. M.; Ju, Y.; Zhang, H.; Zou, Y. B.; Lin, S.; Li, Y. B.; Wang, S. Q.; Ma, E.; Deng, W. H.; Xiang, S. C. et al. Photo responsive electron and proton conductivity within a hydrogen-bonded organic framework. Angew. Chem., Int. Ed. 2023, 62, e202308418.

    Article  CAS  Google Scholar 

  110. Huang, Q. Y.; Chen, X. X.; Li, W. L.; Yang, Z. Y.; Zhang, Y.; Zhao, J.; Chi, Z. G. Local dynamics in a hydrogen-bonded organic framework for adaptive guest accommodation with programmable luminescence. Chem 2023, 9, 1241–1254.

    Article  CAS  Google Scholar 

  111. Han, B.; Wang, H. L.; Wang, C. M.; Wu, H.; Zhou, W.; Chen, B. L.; Jiang, J. Z. Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J. Am. Chem. Soc. 2019, 141, 8737–8740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin, R. B.; He, Y. B.; Li, P.; Wang, H. L.; Zhou, W.; Chen, B. L. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu, B. Q.; Li, L. J.; Liu, S. S.; Wang, H. L.; Liu, H. Y.; Lin, C. X.; Liu, C.; Wu, H.; Zhou, W.; Li, X. Y. et al. Robust biological hydrogen-bonded organic framework with post-functionalized rhenium(I) sites for efficient heterogeneous visible-light-driven CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 8983–8989.

    Article  CAS  Google Scholar 

  114. Huang, Q. Y.; Li, W. L.; Mao, Z.; Qu, L. J.; Li, Y.; Zhang, H.; Yu, T.; Yang, Z. Y.; Zhao, J.; Zhang, Y. et al. An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nat. Commun. 2019, 10, 3074.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1, 695–704.

    Article  CAS  PubMed  Google Scholar 

  116. Huang, Q. Y.; Li, W. L.; Mao, Z.; Zhang, H.; Li, Y.; Ma, D. Y.; Wu, H. Y.; Zhao, J.; Yang, Z. Y.; Zhang, Y. et al. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 2021, 7, 1321–1332.

    Article  CAS  Google Scholar 

  117. Xiao, W. C.; Hu, C. H.; Ward, M. D. Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded framework. J. Am. Chem. Soc. 2014, 136, 14200–14206.

    Article  CAS  PubMed  Google Scholar 

  118. Huang, Y. G.; Shiota, Y.; Wu, M. Y.; Su, S. Q.; Yao, Z. S.; Kang, S.; Kanegawa, S.; Li, G. L.; Wu, S. Q.; Kamachi, T. et al. Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework. Nat. Commun. 2016, 7, 11564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lv, Y. C.; Liang, J. S.; Xiong, Z. L.; Yang, X.; Li, Y. B.; Zhang, H.; Xiang, S. C.; Chen, B. L.; Zhang, Z. J. Smart-responsive HOF heterostructures with multiple spatial-resolved emission modes toward photonic security platform. Adv. Mater. 2024, 36, 2309130.

    Article  CAS  Google Scholar 

  120. Xu, X.; Yan, B. Bioinspired luminescent HOF-based foam as ultrafast and ultrasensitive pressure and acoustic bimodal sensor for human-machine interactive object and information recognition. Adv. Mater. 2023, 35, 2303410.

    Article  CAS  Google Scholar 

  121. Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. Acid responsive hydrogen-bonded organic frameworks. J. Am. Chem. Soc. 2019, 141, 2111–2121.

    Article  CAS  PubMed  Google Scholar 

  122. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, 15, 1730–1752.

    Article  Google Scholar 

  123. Wu, Y. L.; Mao, X. N.; Zhang, M. C.; Zhao, X.; Xue, R. J.; Di, S. J.; Huang, W.; Wang, L.; Li, Y. Y.; Li, Y. G. 2D molecular sheets of hydrogen-bonded organic frameworks for ultrastable sodium-ion storage. Adv. Mater. 2021, 33, 2106079.

    Article  CAS  Google Scholar 

  124. Zhao, X.; Yin, Q.; Mao, X. N.; Cheng, C.; Zhang, L.; Wang, L.; Liu, T. F.; Li, Y. Y.; Li, Y. G. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nat. Commun. 2022, 13, 2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hao, Q.; Li, Z. J.; Lu, C.; Sun, B.; Zhong, Y. W.; Wan, L. J.; Wang, D. Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 2019, 141, 19831–19838.

    Article  CAS  PubMed  Google Scholar 

  126. Kung, C. W.; Wang, T. C.; Mondloch, J. E.; Fairen-Jimenez, D.; Gardner, D. M.; Bury, W.; Klingsporn, J. M.; Barnes, J. C.; Van Duyne, R.; Stoddart, J. F. et al. Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism. Chem. Mater. 2013, 25, 5012–5017.

    Article  CAS  Google Scholar 

  127. Stec, G. J.; Lauchner, A.; Cui, Y.; Nordlander, P.; Halas, N. J. Multicolor electrochromic devices based on molecular plasmonics. ACS Nano. 2017, 11, 3254–3261.

    Article  CAS  PubMed  Google Scholar 

  128. Matsui, J.; Kikuchi, R.; Miyashita, T. A trilayer film approach to multicolor electrochromism. J. Am. Chem. Soc. 2014, 136, 842–845.

    Article  CAS  PubMed  Google Scholar 

  129. Woodward, A. N.; Kolesar, J. M.; Hall, S. R.; Saleh, N. A.; Jones, D. S.; Walter, M. G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473.

    Article  CAS  PubMed  Google Scholar 

  130. Takada, K.; Sakamoto, R.; Yi, S. T.; Katagiri, S.; Kambe, T.; Nishihara, H. Electrochromic bis(terpyridine)metal complex nanosheets. J. Am. Chem. Soc. 2015, 137, 4681–4689.

    Article  CAS  PubMed  Google Scholar 

  131. Feng, J. F.; Liu, T. F.; Cao, R. An electrochromic hydrogen-bonded organic framework film. Angew. Chem., Int. Ed. 2020, 59, 22392–22396.

    Article  CAS  Google Scholar 

  132. Feng, J. F.; Luo, Y.; Wang, X. Y.; Cai, G. F.; Cao, R. A large-area patterned hydrogen-bonded organic framework electrochromic film and device. Small 2023, 19, 2304691.

    Article  CAS  Google Scholar 

  133. Gao, X. Y.; Lu, W. Y.; Wang, Y.; Song, X. Y.; Wang, C.; Kirlikovali, K. O.; Li, P. Recent advancements of photo- and electro-active hydrogen-bonded organic frameworks. Sci. China Chem. 2022, 65, 2077–2095.

    Article  CAS  Google Scholar 

  134. Lu, M. L.; Huang, W.; Gao, S. Z.; Zhang, J. L.; Liang, W. B.; Li, Y.; Yuan, R.; Xiao, D. R. Pyrene-based hydrogen-bonded organic frameworks as new emitters with porosity- and aggregation-induced enhanced electrochemiluminescence for ultrasensitive MicroRNA assay. Anal. Chem. 2022, 94, 15832–15838.

    Article  CAS  PubMed  Google Scholar 

  135. Wang, C.; Wang, Y.; Kirlikovali, K. O.; Ma, K. K.; Zhou, Y. M.; Li, P.; Farha, O. K. Ultrafine silver nanoparticle encapsulated porous molecular traps for discriminative photoelectrochemical detection of mustard gas simulants by synergistic size-exclusion and site-specific recognition. Adv. Mater. 2022, 34, 2202287.

    Article  CAS  Google Scholar 

  136. Wang, C.; Song, X. Y.; Wang, Y.; Xu, R.; Gao, X. Y.; Shang, C.; Lei, P.; Zeng, Q. D.; Zhou, Y. M.; Chen, B. L. et al. A solution-processable porphyrin-based hydrogen-bonded organic framework for photoelectrochemical sensing of carbon dioxide. Angew. Chem., Int. Ed. 2023, 62, e202311482.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support from Chinese Academy of Sciences (No. JCTD-2022-12 CAS youth interdisciplinary team). Y. L. acknowledges the support from the National Science Foundation (No. HRD-2112554).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangyang Liu or Tian-Fu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Huang, XS., Gong, SH. et al. Stable hydrogen-bonded organic frameworks and their photo- and electro-responses. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6665-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6665-7

Keywords

Navigation