Skip to main content
Log in

Multiscale engineering of molecular electrocatalysts for the rapid hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molecular electrocatalysts have demonstrated potential for the hydrogen evolution reaction (HER) due to their well-defined structures and high intrinsic activities. Achieving rapid production of hydrogen requires molecular electrocatalysts to operate at high current densities, which still presents a challenge. In this work, we demonstrate that molecularly dispersed electrocatalysts of cobalt phthalocyanine anchored on carbon nanotubes (CoPc MDEs) are superior candidates due to the efficient charge transport between the substrate and the active site. The intrinsic activity can be enhanced by introducing functional groups on phthalocyanine. To facilitate mass transport, di(ethylene glycol) substituted CoPc molecules are further anchored on a three-dimensional self-supported electrode (CoPc-DEG MDE@CC), enabling continuous operation for 25 h at −1000 mA/cm2 in 1.0 M KOH. Our study demonstrates the potential of molecular electrocatalysts for HER and emphasizes the importance of adjusting intrinsic activity, and charge and mass transport capacity for practical molecular electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, H. S.; Wang, X. L.; Attfield, J. P.; Yang, M. H. Metal nitrides for seawater electrolysis. Chem. Soc. Rev. 2024, 53, 163–203.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, H. Y.; Driess, M.; Menezes, P. W. Sdf-supooeted electrocatalysts for practical water electrolysis. Adv. Energy Mater. 2021, 11, 2102074.

    Article  CAS  Google Scholar 

  3. Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

    Article  CAS  Google Scholar 

  4. Cheng, R. Q.; Min, Y. L.; Li, H. X.; Fu, C. P. Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications. Nano Energy 2023, 115, 108718.

    Article  CAS  Google Scholar 

  5. Li, W.; Zhao, L.; Jiang, X. L.; Chen, Z. K.; Zhang, Y. G.; Wang, S. Y. Confinement engineering of electrocatalyst surfaces and interfaces. Adv. Funct. Mater. 2022, 32, 2207727.

    Article  CAS  Google Scholar 

  6. Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

    Article  Google Scholar 

  7. Cui, Z. B.; Jiao, W. S.; Huang, Z. Y.; Chen, G. Z.; Zhang, B.; Han, Y. H.; Huang, W. Design and synthesis of noble metal-based alloy electrocatalysts and their application in hydrogen evolution reaction. Small 2023, 19, 2301465.

    Article  CAS  Google Scholar 

  8. Li, C. Q.; Kim, S. H.; Lim, H. Y.; Sun, Q. K.; Jiang, Y.; Noh, H. J.; Kim, S. J.; Baek, J.; Kwak, S. K.; Baek, J. B. Self-accommodation induced electronic metal-support interaction on ruthenium site for alkaline hydrogen evolution reaction. Adv. Mater. 2023, 35, 2301369.

    Article  CAS  Google Scholar 

  9. Gong, F. L.; Liu, Y. H.; Zhao, Y.; Liu, W.; Zeng, G.; Wang, G. Q.; Zhang, Y. H.; Gong, L. H.; Liu, J. Universal sub-nanoreactor strategy for synthesis of yolk–shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction. Angew. Chem., Int. Ed. 2023, 62, e202308091.

    Article  CAS  Google Scholar 

  10. Quílez-Bermejo, J.; García-Dalí, S.; Daouli, A.; Zitolo, A.; Canevesi, R. L. S.; Emo, M.; Izquierdo, M. T.; Badawi, M.; Celzard, A.; Fierro, V. Advanced design of metal nanoclusters and single atoms embedded in C1N1-derived carbon materials for ORR, HER, and OER. Adv. Funct. Mater. 2023, 33, 2300405.

    Article  Google Scholar 

  11. Zhang, F. M.; Liu, Y. L.; Yu, F.; Pang, H. J.; Zhou, X.; Li, D. Y.; Ma, W. Q.; Zhou, Q.; Mo, Y. X.; Zhou, H. Q. Engineering multilevel collaborative catalytic interfaces with multifunctional iron sites enabling high-performance real seawater splitting. ACS Nano 2023, 17, 1681–1692.

    Article  CAS  Google Scholar 

  12. Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co, Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 6552–6559.

    Article  Google Scholar 

  13. Xie, L. S.; Tian, J.; Ouyang, Y. J.; Guo, X. A.; Zhang, W. A.; Apfel, U. P.; Zhang, W.; Cao, R. Water-soluble polymers with appending porphyrins as bioinspired catalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 15844–15848.

    Article  CAS  Google Scholar 

  14. Beyene, B. B.; Yibeltal, A. W.; Hung, C. H. Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by water soluble copper(II) porphyrin. Inorg. Chim. Acta 2020, 513, 119929.

    Article  CAS  Google Scholar 

  15. Yang, S. X.; Yu, Y. H.; Gao, X. J.; Zhang, Z. P.; Wang, F. Recent advances in electrocatalysis with phthalocyanines. Chem. Soc. Rev. 2021, 50, 12985–13011.

    Article  CAS  PubMed  Google Scholar 

  16. Dieng, M.; Contamin, O.; Savy, M. Problem of water electrolysis: Interest of catalysts containing molybdenum naphthalocyanines. Electrochim. Acta 1988, 33, 121–126.

    Article  CAS  Google Scholar 

  17. Zagal, J. H.; Griveau, S.; Silva, J. F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coordin. Chem. Rev. 2010, 554, 2755–2791.

    Article  Google Scholar 

  18. Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 2018, 118, 2340–2391.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, W.; Lai, W. Z.; Cao, R. Energy- related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 2017, 117, 3717–3797.

    Article  CAS  PubMed  Google Scholar 

  20. Baglia, R. A.; Zaragoza, J. P. T.; Goldberg, D. P. Biomimetic reactivity of oxygen-derived manganese and iron porphyrinoid complexes. Chem. Rev. 2017, 117, 13320–13352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Evans, D. J.; Pickett, C. J. Chemistry and the hydrogenases. Chem. Soc. Rev. 2003, 32, 268–275.

    Article  PubMed  Google Scholar 

  22. Li, X. L.; Lv, B.; Zhang, X. P.; Jin, X. T.; Guo, K.; Zhou, D. X.; Bian, H. T.; Zhang, W.; Apfel, U. P. et al. Introducing water-network-assisted proton transfer for boosted electrocatalytic hydrogen evolution with cobalt corrole. Angew. Chem., Int. Ed. 2022, 61, e202114310.

    Article  CAS  Google Scholar 

  23. Wang, N.; Zhang, X. P.; Han, J. X.; Lei, H. T.; Zhang, Q. X.; Zhang, H.; Zhang, W.; Apfel, U. P.; Cao, R. Promoting hydrogen evolution reaction with a sulfonic proton relay. Chin. J. Catal. 2023, 45, 88–94.

    Article  CAS  Google Scholar 

  24. Zhang, Q. X.; Lei, H. T.; Guo, H. B.; Wang, Y. B.; Gao, Y. M.; Zhang, W.; Cao, R. Through-space electrostatic effects of positively charged substituents on the hydrogen evolution reaction. ChemSusChem 2022, 15, e202200086.

    Article  CAS  PubMed  Google Scholar 

  25. Andreiadis, E. S.; Jacques, P. A.; Tran, P. D.; Leyris, A.; Chavarot-Kerlidou, M.; Jousselme, B.; Matheron, M.; Pécaut, J.; Palacin, S.; Fontecave, M. et al. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nat. Chem. 2013, 5, 48–53.

    Article  CAS  PubMed  Google Scholar 

  26. Li, X. L.; Lei, H. T.; Liu, J. Y.; Zhao, X. L.; Ding, S. P.; Zhang, Z. Y.; Tao, X. X.; Zhang, W.; Wang, W. C.; Zheng, X. H. et al. Carbon nanotubes with cobalt corroles for hydrogen and oxygen evolution in pH 0–14 solutions. Angew. Chem., Int. Ed. 2018, 130, 15290–15295.

    Article  Google Scholar 

  27. Micheroni, D.; Lan, G. X.; Lin, W. B. Efficient electrocatalytic proton reduction with carbon nanotube-supported metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 15591–15595.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, B. Y.; Chen, L. L.; Zhang, Z. N.; Li, Q.; Khangale, P.; Hildebrandt, D.; Liu, X. Y.; Feng, Q. L.; Qiao, S. L. Modulating the band structure of metal coordinated salen COFs and an in situ constructed charge transfer heterostructure for electrocatalysis hydrogen evolution. Adv. Sci. 2022, 9, 2105912.

    Article  CAS  Google Scholar 

  29. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Scincee 2017, 355, eaad4998.

    Article  Google Scholar 

  30. Zhang, Y. Y.; Chen, S. T.; Zhang, Y. X.; Li, R. J.; Zhao, B.; Peng, T. Y. Hydrogen-bond regulation of the microenvironment of Ni(II)-porphyrin bifunctional electrocatalysts for efficient overall water splitting. Adv. Mater. 2023, 35, 2210727.

    Article  CAS  Google Scholar 

  31. Lin, L.; Li, H. B.; Yan, C. C.; Li, H. F.; Si, R.; Li, M. R.; Xiao, J. P.; Wang, G. X.; Bao, X. H. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 2019, 31, 1903470.

    Article  CAS  Google Scholar 

  32. Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang, Z.; Zhang, Z. S.; Li, H.; Tang, Y. R.; Yuan, Y. B.; Zao, J.; Zheng, H. Z.; Liang, Y. Y. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes. Adv. Energy Mater. 2023, 13, 2203603.

    Article  CAS  Google Scholar 

  34. Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

    Article  CAS  Google Scholar 

  35. Lin, Z. C.; Jiang, Z.; Yuan, Y. B.; Li, H.; Wang, H. X.; Tang, Y. R.; Liu, C. C.; Liang, Y. Y. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction. Chin. J. Catal. 2022, 43, 104–109.

    Article  CAS  Google Scholar 

  36. Fang, S.; Zhu, X. R.; Liu, X. K.; Gu, J.; Liu, W.; Wang, D. H.; Zhang, W.; Lin, Y.; Lu, J. L.; Wei, S. Q. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 2020, 11, 1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng, X. L.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, R.; Gong, Z. C.; Liu, J. B.; Dong, J. C.; Liao, J. W.; Liu, H.; Huang, H. K.; Liu, J. J.; Yan, M. M.; Huang, K. et al. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 2021, 33, 2103533.

    Article  CAS  Google Scholar 

  41. Chen, B. T.; Zou, H. Y.; Gong, L.; Zhang, H.; Li, N.; Pan, H. H.; Wang, K.; Yang, T.; Liu, Y. P.; Duan, L. L. et al. Molecular engineering of dispersed tin phthalocyanine on carbon nanotubes for selective CO2 reduction to formate. Appl. Catal. B 2024, 344, 123650.

    Article  CAS  Google Scholar 

  42. Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639–642.

    Article  CAS  PubMed  Google Scholar 

  43. Su, J. J.; Zhang, J. J.; Chen, J. C.; Song, Y.; Huang, L. B.; Zhu, M. H.; Yakobson, B. I.; Tang, B. Z.; Ye, R. Q. Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current. Energy Environ. Sci. 2021, 14, 483–492.

    Article  CAS  Google Scholar 

  44. Zhu, W. W.; Liu, S. Q.; Zhao, K. M.; Ye, G. Y.; Huang, K.; He, Z. Revealing a double-volcano-like structure-activity relationship for substitution-functionalized metal-phthalocyanine catalysts toward electrochemical CO2 reduction. Small 2024, 20, 2306144.

    Article  CAS  Google Scholar 

  45. Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

    Article  CAS  Google Scholar 

  46. Yuan, S.; Peng, J. Y.; Zhang, Y. R.; Zheng, D. J.; Bagi, S.; Wang, T.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning the catalytic activity of Fe-phthalocyanine-based catalysts for the oxygen reduction reaction by ligand functionalization. ACS Catal. 2022, 12, 7278–7287.

    Article  CAS  Google Scholar 

  47. Wang, Y.; Zhang, Z. S.; Zhang, X.; Yuan, Y. B.; Jiang, Z.; Zheng, H. Z.; Wang, Y. G.; Zhou, H.; Liang, Y. Y. Theory-driven design of electrocatalysts for the two-electron oxygen reduction reaction based on dispersed metal phthalocyanines. CCS Chem. 2022, 4, 228–236.

    Article  CAS  Google Scholar 

  48. Mu, X. Q.; Gu, X. Y.; Dai, S. P.; Chen, J. B.; Cui, Y. J.; Chen, Q.; Yu, M.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ. Sci. 2022, 15, 4048–4057.

    Article  CAS  Google Scholar 

  49. Wang, A. J.; Li, C.; Zhang, J.; Chen, X. D.; Cheng, L. X.; Zhu, W. H. Graphene-oxide- supported covalent organic polymers based on zinc phthalocyanine for efficient optical limiting and hydrogen evolution. J. Colloid Interf. Sci. 2019, 556, 159–171.

    Article  CAS  Google Scholar 

  50. Gu, T. T.; Attatsi, I. K.; Zhu, W. H.; Li, M. Z.; Ndur, S. A.; Liang, X. Enhanced electrocatalytic hydrogen evolutions of Co(II)phthalocyanine through axially coordinated pyridine-pyrene. Inorg. Chim. Acta 2022, 530, 120696.

    Article  CAS  Google Scholar 

  51. Xu, G. L.; Lei, H. T.; Zhou, G. J.; Zhang, C. C.; Xie, L. S.; Zhang, W.; Cao, R. Boosting hydrogen evolution by using covalent frameworks of fluorinated cobalt porphyrins supported on carbon nanotubes. Chem. Commun. 2019, 55, 12647–12650.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices (No. 2019B121205001), Shenzhen fundamental research funding (Nos. JCYJ20220818100618039 and JCYJ20200109141405950), and the National Natural Science Foundation of China (No. 22075125). The computational resource was supported by the Center for Computational Science and Engineering (SUSTech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongye Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jiang, Z., Yuan, Y. et al. Multiscale engineering of molecular electrocatalysts for the rapid hydrogen evolution reaction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6660-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6660-z

Keywords

Navigation