Skip to main content
Log in

Formation of ZnSe magic-size clusters displaying optical absorption doublets from prenucleation clusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The formation pathway of colloidal semiconductor ZnSe magic-size clusters (MSCs) in a reaction that display an optical absorption doublet remains poorly understood. The reaction of Zn(OAc)2/OLA (made from zinc acetate and oleylamine) and tri-n-octylphosphine selenide (SeTOP) in OLA in the presence of diphenylphosphine (HPPh2) is studied, in which dMSC-345 displays a doublet peaking at 328/345 nm. We suggest that the development is from the clusters that form in the initial prenucleation stage of the reaction. The clusters are the precursor compound (PC-299) of MSC-299 (displaying an absorption singlet peaking at 299 nm). PC-299 transforms to PC-345 at a later stage. The presence of alcohol (such as methanol or ethylene glycol) promotes another pathway, which is the PC-299 to PC-320 transformation. PC-320 transforms to dMSC-320 (with a doublet at 305/320 nm), followed by dMSC-345 via PC-345. The present study provides additional evidence that clusters (PC-299) form and transform (such as to dMSC-345 via PC-345) in the prenucleation stage of ZnSe quantum dots (QDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, H. T.; Sun, H. Z.; Zhang, H.; Gao, C.; Yang, B. An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Res. 2010, 3, 496–505.

    Article  CAS  Google Scholar 

  2. Chen, H. S.; Wang, S. J. J.; Lo, C. J.; Chi, J. Y. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl. Phys. Lett. 2005, 86, 131905.

    Article  Google Scholar 

  3. Li, Z. J.; Li, S. Y.; Davis, A. H.; Hofman, E.; Leem, G.; Zheng, W. W. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 2020, 13, 1668–1676.

    Article  CAS  Google Scholar 

  4. Luo, W. N.; Jiu, T. G.; Kuang, C. Y.; Li, B. R.; Lu, F. S.; Fang, J. F. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 2015, 8, 3045–3053.

    Article  CAS  Google Scholar 

  5. Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

    Article  CAS  Google Scholar 

  6. Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A. R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

    Article  CAS  Google Scholar 

  7. Long, Z. W.; Liu, M. R.; Wu, X. G.; Gu, K.; Yang, G. L.; Chen, Z.; Liu, Y.; Liu, R. H.; Zhong, H. Z. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2023, 2, 296–304.

    Article  Google Scholar 

  8. Yu, K.; Hrdina, A.; Zhang, X. G.; Ouyang, J. Y.; Leek, D. M.; Wu, X. H.; Gong, M. L.; Wilkinson, D.; Li, C. S. Highly-photoluminescent ZnSe nanocrystals via a non-injection-based approach with precursor reactivity elevated by a secondary phosphine. Chem. Commun. 2011, 47, 8811–8813.

    Article  CAS  Google Scholar 

  9. Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

    Article  CAS  Google Scholar 

  10. Pang, Y. P.; Zhang, M. Y.; Chen, D. C.; Chen, W.; Wang, F.; Anwar, S. J.; Saunders, M.; Rowles, M. R.; Liu, L. H.; Liu, S. M. et al. Why do colloidal wurtzite semiconductor nanoplatelets have an atomically uniform thickness of eight monolayers. J. Phys. Chem. Lett. 2019, 10, 3465–3471.

    Article  CAS  PubMed  Google Scholar 

  11. Cunningham, P. D.; Coropceanu, I.; Mulloy, K.; Cho, W.; Talapin, D. V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: A connection between clusters, nanowires, and two-dimensional nanoplatelets. ACS Nano 2020, 14, 3847–3857.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, Y.; Jiang, R. D.; Wang, Y. Y.; Rohrs, H. W.; Rath, N. P.; Buhro, W. E. Isolation of amine derivatives of (ZnSe)34 and (CdTe)34. Spectroscopic comparisons of the (II–VI)13 and (II–VI)34 magic-size nanoclusters. Inorg. Chem. 2019, 58, 1815–1825.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y. Y.; Zhou, Y.; Zhang, Y.; Buhro, W. E. Magic-size II–VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165–1177.

    Article  CAS  PubMed  Google Scholar 

  14. Park, H.; Chung, H.; Kim, W. Synthesis of ultrathin wurtzite ZnSe nanosheets. Mater. Lett. 2013, 99, 172–175.

    Article  CAS  Google Scholar 

  15. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  CAS  Google Scholar 

  16. Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

    Article  CAS  PubMed  Google Scholar 

  17. Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra- stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99–102.

    Article  CAS  PubMed  Google Scholar 

  18. Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548–552.

    Article  CAS  Google Scholar 

  19. Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.

    Article  Google Scholar 

  21. Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y.; Rowell, N.; Luan, C. R.; Zhang, M.; Chen, X. Q.; Yu, K. A two-pathway model for the evolution of colloidal compound semiconductor quantum dots and magic-size clusters. Adv. Mater. 2022, 34, 2107940.

    Article  CAS  Google Scholar 

  23. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

    Article  CAS  PubMed  Google Scholar 

  24. Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem., Int. Ed. 1996, 35, 1154–1196.

    Article  Google Scholar 

  25. Service, R. F. How far can we push chemical self-assembly. Science 2005, 309, 95–95.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, X. X.; Zhang, M.; Shen, Q.; Li, Y.; Luan, C. R.; Yu, K. The precursor compound of two types of ZnSe magic-sized clusters. Nano Res. 2022, 15, 465–474.

    Article  CAS  Google Scholar 

  27. Li, Y.; Zhang, M.; He, L.; Rowell, N.; Kreouzis, T.; Zhang, C. C.; Wang, S. L.; Luan, C. R.; Chen, X. Q.; Zhang, S. J. et al. Manipulating reaction intermediates to aqueous-phase ZnSe magic-size clusters and quantum dots at room temperature. Angew. Chem., Int. Ed. 2022, 61, e202209615.

    Article  CAS  Google Scholar 

  28. Wang, T. H.; Wang, Z.; Wang, S. L.; Chen, X. Q.; Luan, C. R.; Yu, K. Thermally-induced isomerization of prenucleation clusters during the prenucleation stage of CdTe quantum dots. Angew. Chem., Int. Ed. 2023, 62, e202310234.

    Article  CAS  Google Scholar 

  29. Xu, R. K.; Wang, Z.; Yang, Y. S.; Gu, C.; Luan, C. R.; Wang, S. L.; Chen, X. Q.; Yu, K. Formation and transformation of CdS clusters during the prenucleation stage and in a dilute dispersion at room temperature. Nano Lett. 2024, 24, 1294–1302.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Y. S.; Shen, Q.; Zhang, C. C.; Rowell, N.; Zhang, M.; Chen, X. Q.; Luan, C. R.; Yu, K. Direct and indirect pathways of CdTeSe magic-size cluster isomerization induced by surface ligands at room temperature. ACS Cent. Sci. 2023, 9, 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, K.; Liu, X. Y.; Zeng, Q.; Leek, D. M.; Ouyang, J. Y.; Whitmore, K. M.; Ripmeester, J. A.; Tao, Y.; Yang, M. L. Effect of tertiary and secondary phosphines on low-temperature formation of quantum dots. Angew. Chem. 2013, 125, 4923–4928.

    Article  Google Scholar 

  32. Jackman, L. M.; Cotton F. A. Dynamic Nuclear Magnetic Resonance Spectroscopy; Academic Press: New York, 1975.

    Google Scholar 

  33. He, L.; Luan, C. R.; Liu, S. P.; Chen, M.; Rowell, N.; Wang, Z.; Li, Y.; Zhang, C. C.; Lu, J.; Zhang, M. et al. Transformations of magic-size clusters via precursor compound cation exchange at room temperature. J. Am. Chem. Soc. 2022, 144, 19060–19069.

    Article  CAS  PubMed  Google Scholar 

  34. Justino, L. L. G.; Ramos, M. L.; Knaapila, M.; Marques, A. T.; Kudla, C. J.; Scherf, U.; Almásy, L.; Schweins, R.; Burrows, H. D.; Monkman, A. P. Gel formation and interpolymer alkyl chain interactions with poly (9,9-dioctylfluorene-2,7-diyl) (PFO) in toluene solution: Results from NMR, SANS, DFT, and semiempirical calculations and their implications for PFO β-phase formation. Macromolecules 2011, 44, 334–343.

    Article  CAS  Google Scholar 

  35. Wang, D. Q.; Liu, Y. H.; Rowell, N.; Wang, S. L.; Zhang, C. C.; Zhang, M.; Luan, C. R.; Yu, K. Direct and indirect evolution of photoluminescent semiconductor CdS magic-size clusters through their precursor compounds. Angew. Chem., Int. Ed. 2023, 62, e202304329.

    Article  CAS  Google Scholar 

  36. Liu, Y. Y.; Willis, M.; Rowell, N.; Luo, W. Z.; Fan, H. S.; Han, S.; Yu, K. Effect of small molecule additives in the prenucleation stage of semiconductor CdSe quantum dots. J. Phys. Chem. Lett. 2018, 9, 6356–6363.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Y. Y.; Rowell, N.; Willis, M.; Zhang, M.; Wang, S. L.; Fan, H. S.; Huang, W.; Chen, X. Q.; Yu, K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets. J. Phys. Chem. Lett. 2019, 10, 2794–2801.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, J. M.; Cao, Z. P.; Zhu, Y. C.; Rowell, N.; Li, Y.; Wang, S. L.; Zhang, C. C.; Jiang, G.; Zhang, M.; Zeng, J. R. et al. Transformation pathway from CdSe magic-size clusters with absorption doublets at 373/393 nm to clusters at 434/460 nm. Angew. Chem., Int. Ed. 2021, 60, 20358–20365.

    Article  CAS  Google Scholar 

  39. Shen, J.; Luan, C. R.; Rowell, N.; Li, Y.; Zhang, M.; Chen, X. Q.; Yu, K. Size matters: Steric hindrance of precursor molecules controlling the evolution of CdSe magic-size clusters and quantum dots. Nano Res. 2022, 15, 8564–8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao, Z. P.; Zhu, J. M.; Peng, J.; Meng, N.; Bian, F. G.; Luan, C. R.; Zhang, M.; Li, Y.; Yu, K.; Zeng, J. R. Transformation pathway from CdSe nanoplatelets with absorption doublets at 373/393 nm to nanoplatelets at 434/460 nm. J. Phys. Chem. Lett. 2022, 13, 3983–3989.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Z.; Zhang, C. C.; Wang, S. L.; Zhang, M.; Chen, X. Q.; Luan, C. R.; Yu, K. Formation and transformation of ZnTe and CdTe magic-size clusters assisted by their precursor compounds. Chem. Mater., in press, doi: https://doi.org/10.1021/acs.chemmater.3c03309.

Download references

Acknowledgements

K. Y. thanks the National Natural Science Foundation of China (No. 22275126), the Natural Science Foundation of Sichuan Province (No. 2023NSFSC0634), and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University (No. SKLSSM 2023031). C. R. L. thanks the National Natural Science Foundation of China (No. 22305162). We thank Dr. Li He and Dr. Meng Zhang for their assistance in the experimental design and manuscript preparation. For 1H NMR and TEM, we thank Analysis and Testing Center of Sichuan University (Dr. ChunChun Zhang and Dr. Shanling Wang). We are also grateful to Dr. Feng Yang (College of Chemistry, Sichuan University) for her invaluable patience for TEM. For LDI-TOF MS, we thank the comprehensive training platform of the Specialized Laboratory of College of Chemistry, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoran Luan or Kui Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wang, S., Xue, J. et al. Formation of ZnSe magic-size clusters displaying optical absorption doublets from prenucleation clusters. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6627-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6627-0

Keywords

Navigation