Skip to main content
Log in

How interfacial electron-donating defects influence the structure and charge of gold nanoparticles on TiO2 support

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The reduction degree of TiO2 support is critical to the performances of metal catalysts. In many previous theoretical calculations, only the bridge oxygen vacancy (Ov) was considered as the electron-donating defect on reduced rutile TiO2 (r-TiO2−x) supports. However, titanium adatoms (Tiad.), oxidized titanium islands (Tiad.On), and acid hydroxyls (ObrH) also exist at the metal/support interface. By conducting density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations, we compared r-TiO2−x surfaces with Ov, Tiad., Tiad.On, and ObrH sites loaded with Au nanoparticles (NPs). The results showed the Au NPs were oxygen-phobic but titanium-philic, resulting in wetting of Ov and Tiad. but short contact with Tiad.On and ObrH. The Bader charges of Au NPs (QM) showed a good linear relationship with the ideal number of donating electrons (Ne) from the defective sites (QM = −KeNe + QM,S), demonstrating the intrinsic electron allocation at the interface. The Ov, Tiad., and Tiad.On exhibited similar slopes (Ke), relatively steeper than that of ObrH. That means in the scope of Au NP charge state, the Tiad. and Tiad.On have a close electron-donating ability with Ov, but the ObrH donates relatively fewer electrons. This linear relationship can be extended approximately to other metals. The higher the metal work function, the steeper the Ke for easier electron donation from defective sites. The stronger the metal oxygen affinity, the more positive the intercept (QM,S). That explains the easy generation of metallic or negative Pt and Au NPs on r-TiO2−x, but hard for Cu and Zn in experiment. That provides theoretical guidance for regulating the charge of metal NPs over TiO2−x supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mehrabadi, B. A. T.; Eskandari, S.; Khan, U.; White, R. D.; Regalbuto, J. R. Chapter One—A review of preparation methods for supported metal catalysts. Adv. Catal. 2017, 61, 1–35.

    Article  CAS  Google Scholar 

  2. Ndolomingo, M. J.; Bingwa, N.; Meijboom, R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci. 2020, 55, 6195–6241.

    Article  CAS  Google Scholar 

  3. Wang, H. W.; Lu, J. L. A review on particle size effect in metal-catalyzed heterogeneous reactions. Chin. J. Chem. 2020, 38, 1422–1444.

    Article  CAS  Google Scholar 

  4. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

    Article  CAS  Google Scholar 

  6. Li, Y. Y.; Zhang, Y. S.; Qian, K.; Huang, W. X. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts. ACS Catal. 2022, 12, 1268–1287.

    Article  Google Scholar 

  7. Sadakiyo, M. Support effects of metal-organic frameworks in heterogeneous catalysis. Nanoscale 2022, 14, 3398–3406.

    Article  CAS  PubMed  Google Scholar 

  8. Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250–1349.

    Article  CAS  PubMed  Google Scholar 

  9. Hua, M. L.; Song, J. L.; Huang, X.; Hou, M. Q.; Fan, H. L.; Zhang, Z. F.; Wu, T. B.; Han, B. X. Support effect of Ru catalysts for efficient conversion of biomass-derived 2,5-hexanedione to different products. ACS Catal. 2021, 11, 7685–7693.

    Article  CAS  Google Scholar 

  10. Comotti, M.; Li, W. C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.

    Article  CAS  PubMed  Google Scholar 

  11. Hernández Mejía, C.; van Deelen, T. W.; de Jong, K. P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nat. Commun. 2018, 9, 4459.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.

    Article  CAS  PubMed  Google Scholar 

  13. Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

    Article  CAS  PubMed  Google Scholar 

  14. Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal. 2007, 44, 15–26.

    Article  CAS  Google Scholar 

  15. Overbury, S. H.; Schwartz, V.; Mullins, D. R.; Yan, W.; Dai, S. Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. J. Catal. 2006, 241, 56–65.

    Article  CAS  Google Scholar 

  16. Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au catalysts for low temperature CO oxidation. J. Catal. 2003, 216, 425–432.

    Article  CAS  Google Scholar 

  17. Schlexer, P.; Widmann, D.; Behm, R. J.; Pacchioni, G. CO oxidation on a Au/TiO2 nanoparticle catalyst via the Au-assisted Mars–van Krevelen mechanism. ACS Catal. 2018, 8, 6513–6525.

    Article  CAS  Google Scholar 

  18. Guan, X. J.; Liu, M. C.; Mao, S. S.; Shen, S. H. Enhanced photocatalytic water splitting of TiO2 by decorating with facet-controlled Au nanocrystals. Appl. Phys. Lett. 2021, 119, 143901.

    Article  CAS  Google Scholar 

  19. Tanaka, A.; Teramura, K.; Hosokawa, S.; Kominami, H.; Tanaka, T. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem. Sci. 2017, 8, 2574–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rayalu, S. S.; Jose, D.; Joshi, M. V.; Mangrulkar, P. A.; Shrestha, K.; Klabunde, K. Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: Enhancement in photocatalytic activity due to SPR effect. Appl. Catal. B: Environ. 2013, 142–143, 684–693.

    Article  Google Scholar 

  21. Goodman, D. W. “Catalytically active Au on Titania”: Yet another example of a strong metal support interaction (SMSI)? Catal. Lett. 2005, 99, 1–4.

    Article  CAS  Google Scholar 

  22. Wang, Z. H.; Fu, H. F.; Tian, Z. W.; Han, D. M.; Gu, F. B. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation. Nanoscale 2016, 8, 5865–5872.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Y. S.; Liu, J. X.; Qian, K.; Jia, A. P.; Li, D.; Shi, L.; Hu, J.; Zhu, J. F.; Huang, W. X. Structure sensitivity of Au-TiO2 strong metal-support interactions. Angew. Chem., Int. Ed. 2021, 60, 12074–12081.

    Article  CAS  Google Scholar 

  24. Du, X. R.; Huang, Y. K.; Pan, X. L.; Han, B.; Su, Y.; Jiang, Q. K.; Li, M. R.; Tang, H. L.; Li, G.; Qiao, B. T. Size- dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hvolbæk, B.; Janssens, T. V. W.; Clausen, B. S.; Falsig, H.; Christensen, C. H.; Nørskov, J. K. Catalytic activity of Au nanoparticles. Nano Today 2007, 2, 14–18.

    Article  Google Scholar 

  27. Saqlain, M. A.; Hussain, A.; Siddiq, M.; Ferreira, A. R.; Leitão, A. A. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: A DFT+U study. Phys. Chem. Chem. Phys. 2015, 17, 25403–25410.

    Article  CAS  PubMed  Google Scholar 

  28. Saqlain, M. A.; Novais Antunes, F. P.; Hussain, A.; Siddiq, M.; Leitão, A. A. Adsorption of oxygen and CO oxidation on Au/anatase (001) catalysts. A DFT+U study. New J. Chem. 2017, 41, 2073–2080.

    Article  CAS  Google Scholar 

  29. Saqlain, M. A.; Hussain, A.; Siddiq, M.; Leitão, A. A. A DFT+U study of the mars van Krevelen mechanism of CO oxidation on Au/TiO2 catalysts. Appl. Catal. A: Gen. 2016, 519, 27–33.

    Article  CAS  Google Scholar 

  30. Chen, Y.; Crawford, P.; Hu, P. Recent advances in understanding CO oxidation on gold nanoparticles using density functional theory. Catal. Lett. 2007, 119, 21–28.

    Article  CAS  Google Scholar 

  31. Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.

    Article  CAS  Google Scholar 

  32. Tauster, S. J. Strong metal-support interactions. Acc. Chem. Res. 1987, 20, 389–394.

    Article  CAS  Google Scholar 

  33. Fu, Q.; Wagner, T.; Olliges, S.; Carstanjen, H. D. Metal-oxide interfacial reactions: Encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 2005, 109, 944–951.

    Article  CAS  PubMed  Google Scholar 

  34. Fang, W. Z.; Xing, M. Y.; Zhang, J. L. Modifications on reduced titanium dioxide photocatalysts: A review. J. Photochem. Photobiol. C: Photochem. Rev. 2017, 32, 21–39.

    Article  CAS  Google Scholar 

  35. Zhang, J. L.; Tian, B. Z.; Wang, L. Z.; Xing, M. Y.; Lei, J. Y. Mechanism of photocatalysis. In Photocatalysis: Fundamentals, Materials and Applications, Zhang, J. L.; Tian, B. Z.; Wang, L. Z.; Xing, M. Y.; Lei, J. Y., Eds.; Springer: Singapore, 2018; pp 1–15.

    Chapter  Google Scholar 

  36. Henderson, M. A. An HREELS and TPD study of water on TiO2 (110): The extent of molecular versus dissociative adsorption. Surf. Sci. 1996, 355, 151–166.

    Article  CAS  Google Scholar 

  37. Pan, J. M.; Maschhoff, B. L.; Diebold, U.; Madey, T. E. Interaction of water, oxygen, and hydrogen with TiO2 (110) surfaces having different defect densities. J. Vac. Sci. Technol. A 1992, 10, 2470–2476.

    Article  CAS  Google Scholar 

  38. Geng, Z. H.; Jin, X. C.; Wang, R. M.; Chen, X.; Guo, Q.; Ma, Z. B.; Dai, D. X.; Fan, H. J.; Yang, X. M. Low- temperature hydrogen production via water conversion on Pt/TiO2. J. Phys. Chem. C 2018, 122, 10956–10962.

    Article  CAS  Google Scholar 

  39. Bennett, R. A.; McCavish, N. D. Non- stoichiometric oxide surfaces and ultra-thin films: Characterisation of TiO2. Top. Catal. 2005, 36, 11–19.

    Article  CAS  Google Scholar 

  40. Sanville, E. J.; Vernon, L. J.; Kenny, S. D.; Smith, R.; Moghaddam, Y.; Browne, C.; Mulheran, P. Surface and interstitial transition barriers in rutile (110) surface growth. Phys. Rev. B 2009, 80, 235308.

    Article  Google Scholar 

  41. Mulheran, P. A.; Nolan, M.; Browne, C. S.; Basham, M.; Sanville, E.; Bennett, R. A. Surface and interstitial Ti diffusion at the rutile TiO2 (110) surface. Phys. Chem. Chem. Phys. 2010, 12, 9763–9771.

    Article  CAS  PubMed  Google Scholar 

  42. Finazzi, E.; Di Valentin, C.; Pacchioni, G. Nature of Ti interstitials in reduced bulk anatase and rutile TiO2. J. Phys. Chem. C 2009, 113, 3382–3385.

    Article  CAS  Google Scholar 

  43. Wendt, S.; Schaub, R.; Matthiesen, J.; Vestergaard, E. K.; Wahlström, E.; Rasmussen, M. D.; Thostrup, P.; Molina, L. M.; Lægsgaard, E.; Stensgaard, I. et al. Oxygen vacancies on TiO2 and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 2005, 598, 226–245.

    Article  CAS  Google Scholar 

  44. Hammer, B.; Wendt, S.; Besenbacher, F. Water adsorption on TiO2. Top. Catal. 2010, 53, 423–430.

    Article  CAS  Google Scholar 

  45. Petrik, N. G.; Kimmel, G. A. Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2 (110). J. Phys. Chem. C 2015, 119, 23059–23067.

    Article  CAS  Google Scholar 

  46. Wang, Y. G.; Yoon, Y.; Glezakou, V. A.; Li, J.; Rousseau, R. The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y. G.; Cantu, D. C.; Lee, M. S.; Li, J.; Glezakou, V. A.; Rousseau, R. CO oxidation on Au/TiO2: Condition-dependent active sites and mechanistic pathways. J. Am. Chem. Soc. 2016, 138, 10467–10476.

    Article  CAS  PubMed  Google Scholar 

  48. Cao, W.; Xia, G. J.; Yao, Z.; Zeng, K. H.; Qiao, Y.; Wang, Y. G. Aldehyde hydrogenation by Pt/TiO2 catalyst in aqueous phase: Synergistic effect of oxygen vacancy and solvent water. JACS Au 2023, 3, 143–153.

    Article  CAS  PubMed  Google Scholar 

  49. Petrik, N. G.; Zhang, Z. R.; Du, Y. G.; Dohnálek, Z.; Lyubinetsky, I.; Kimmel, G. A. Chemical reactivity of reduced TiO2 (110): The dominant role of surface defects in oxygen chemisorption. J. Phys. Chem. C 2009, 113, 12407–12411.

    Article  CAS  Google Scholar 

  50. Wahlström, E.; Lopez, N.; Schaub, R.; Thostrup, P.; Rennau, A.; Africh, C.; Lægsgaard, E.; Nørskov, J. K.; Besenbacher, F. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2 (110). Phys. Rev. Lett. 2003, 90, 026101.

    Article  PubMed  Google Scholar 

  51. Galhenage, R. P.; Yan, H.; Tenney, S. A.; Park, N.; Henkelman, G.; Albrecht, P.; Mullins, D. R.; Chen, D. A. Understanding the nucleation and growth of metals on TiO2: Co compared to Au, Ni, and Pt. J. Phys. Chem. C 2013, 117, 7191–7201.

    Article  CAS  Google Scholar 

  52. Agacino Valdés, E.; Tavizón, G.; de la Mora, P. Theoretical study of Aun clusters (n = 1–5) deposited on a rutile TiO2 (110) slab, concerning structure and stability. J. Comput. Chem. 2020, 41, 2750–2757.

    Article  PubMed  Google Scholar 

  53. Xia, G. J.; Lee, M. S.; Glezakou, V. A.; Rousseau, R.; Wang, Y. G. Diffusion and surface segregation of interstitial Ti defects induced by electronic metal-support interactions on a Au/TiO2 nanocatalyst. ACS Catal. 2022, 12, 4455–4464.

    Article  CAS  Google Scholar 

  54. Tanaka, T.; Sumiya, A.; Sawada, H.; Kondo, Y.; Takayanagi, K. Direct observation of interstitial titanium ions in TiO2 substrate with gold nanoparticle. Surf. Sci. 2014, 619, 39–43.

    Article  CAS  Google Scholar 

  55. Bennett, R. A.; Stone, P.; Bowker, M. Pd nanoparticle enhanced Re-oxidation of non-stoichiometric TiO2: STM imaging of spillover and a new form of SMSI. Catal. Lett. 1999, 59, 99–105.

    Article  CAS  Google Scholar 

  56. Wan, W. J.; Nie, X. W.; Janik, M. J.; Song, C. S.; Guo, X. W. Adsorption, dissociation, and spillover of hydrogen over Au/TiO2 catalysts: The effects of cluster size and metal-support interaction from DFT. J. Phys. Chem. C 2018, 122, 17895–17916.

    Article  CAS  Google Scholar 

  57. Zhu, Y. M.; Liu, D. S.; Meng, M. H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: A traditional phenomenon for new applications. Chem. Commun. 2014, 50, 6049–6051

    Article  CAS  Google Scholar 

  58. Panayotov, D. A.; Burrows, S. P.; Yates, J. T.; Morris, J. R. Mechanistic studies of hydrogen dissociation and spillover on Au/TiO2: IR spectroscopy of coadsorbed CO and H-donated electrons. J. Phys. Chem. C 2011, 115, 22400–22408.

    Article  CAS  Google Scholar 

  59. Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12, 3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sravan Kumar, K. B.; Whittaker, T. N.; Peterson, C.; Grabow, L. C.; Chandler, B. D. Water poisons H2 activation at the Au-TiO2 interface by slowing proton and electron transfer between Au and Titania. J. Am. Chem. Soc. 2020, 142, 5760–5772.

    Article  CAS  PubMed  Google Scholar 

  61. Lykhach, Y.; Kozlov, S. M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J. et al. Counting electrons on supported nanoparticles. Nat. Mater. 2016, 15, 284–288.

    Article  CAS  PubMed  Google Scholar 

  62. Aso, R.; Hojo, H.; Takahashi, Y.; Akashi, T.; Midoh, Y.; Ichihashi, F.; Nakajima, H.; Tamaoka, T.; Yubuta, K.; Nakanishi, H. et al. Direct identification of the charge state in a single platinum nanoparticle on titanium oxide. Science 2022, 378, 202–206.

    Article  CAS  PubMed  Google Scholar 

  63. Kühne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schütt, O.; Schiffmann, F. et al. CP2K: An electronic structure and molecular dynamics software package-quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103.

    Article  PubMed  Google Scholar 

  64. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396.

    Article  CAS  Google Scholar 

  65. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  PubMed  Google Scholar 

  66. Farnesi Camellone, M.; Marx, D. On the impact of solvation on a Au/TiO2 nanocatalyst in contact with water. J. Phys. Chem. Lett. 2013, 4, 514–518.

    Article  CAS  PubMed  Google Scholar 

  67. Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Chen, F. R.; Liu, L. M.; Sui, M. L. Self- hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 2018, 9, 2752.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ji, Y. F.; Wang, B.; Luo, Y. Location of trapped hole on rutile-TiO2 (110) surface and its role in water oxidation. J. Phys. Chem. C 2012, 116, 7863–7866.

    Article  CAS  Google Scholar 

  69. Setvin, M.; Franchini, C.; Hao, X. F.; Schmid, M.; Janotti, A.; Kaltak, M.; Van De Walle, C. G.; Kresse, G.; Diebold, U. Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 2014, 113, 086402.

    Article  CAS  PubMed  Google Scholar 

  70. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  Google Scholar 

  71. Whittaker, T.; Kumar, K. B. S.; Peterson, C.; Pollock, M. N.; Grabow, L. C.; Chandler, B. D. H2 oxidation over supported Au nanoparticle catalysts: Evidence for heterolytic H2 activation at the metal-support interface. J. Am. Chem. Soc. 2018, 140, 16469–16487.

    Article  CAS  PubMed  Google Scholar 

  72. Lemire, C.; Meyer, R.; Shaikhutdinov, S.; Freund, H. J. Do quantum size effects control CO adsorption on gold nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 118–121.

    Article  Google Scholar 

  73. Mavrikakis, M.; Stoltze, P.; Nørskov, J. K. Making gold less noble. Catal. Lett. 2000, 64, 101–106.

    Article  CAS  Google Scholar 

  74. Drummond, T. J. Work functions of the transition metals and metal silicides. J. Appl. Phys. 1999, 85, 1–24.

    Google Scholar 

  75. Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution; CRC Press: New York, 2017.

    Book  Google Scholar 

  76. An, K.; Somorjai, G. A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 2012, 4, 1512–1524.

    Article  CAS  Google Scholar 

  77. Lin, L. N.; Zhong, Q. L.; Zheng, Y. Z.; Cheng, Y.; Qi, R. J.; Huang, R. Size effect of Au nanoparticles in Au-TiO2−x photocatalyst. Chem. Phys. Lett. 2021, 770, 138457.

    Article  CAS  Google Scholar 

  78. Yogi, C.; Kojima, K.; Hashishin, T.; Wada, N.; Inada, Y.; Della Gaspera, E.; Bersani, M.; Martucci, A.; Liu, L. J.; Sham, T. K. Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. J. Phys. Chem. C 2011, 115, 6554–6560.

    Article  CAS  Google Scholar 

  79. Kuo, C. T.; Lu, Y. B.; Kovarik, L.; Engelhard, M.; Karim, A. M. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters. ACS Catal. 2019, 9, 11030–11041.

    Article  CAS  Google Scholar 

  80. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

    Article  CAS  PubMed  Google Scholar 

  81. Dessal, C.; Martínez, L.; Maheu, C.; Len, T.; Morfin, F.; Rousset, J. L.; Puzenat, E.; Afanasiev, P.; Aouine, M.; Soler, L. et al. Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution. J. Catal. 2019, 375, 155–163.

    Article  CAS  Google Scholar 

  82. Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213–216.

    Article  CAS  PubMed  Google Scholar 

  83. Beck, A.; Huang, X.; Artiglia, L.; Zabilskiy, M.; Wang, X.; Rzepka, P.; Palagin, D.; Willinger, M. G.; van Bokhoven, J. A. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat. Commun. 2020, 11, 3220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Frey, H.; Beck, A.; Huang, X.; Van Bokhoven, J. A.; Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022, 376, 982–987.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFA1503102), the National Natural Science Foundation of China (Nos. 22022504, 22003022, and 22203041), Guangdong Basic and Applied Basic Research Foundation, China (No. 2021A1515110406), Guangdong “Pearl River” Talent Plan (No. 2019QN01L353), and Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002). Most calculations were performed on the CHEM high-performance computing cluster (CHEM-HPC) located at the Department of Chemistry, SUSTech. The computational resources were also supported by the Center for Computational Science and Engineering at the Southern University of Science and Technology (SUSTech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Gang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, GJ., Fu, Y., Cao, W. et al. How interfacial electron-donating defects influence the structure and charge of gold nanoparticles on TiO2 support. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6625-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6625-2

Keywords

Navigation